(09年武漢二中調(diào)研)(12分)如圖,在棱長為2的正方體ABCD―A1B1C1D1中,M為AB中點.
(1)求直線B1C與DM所成角的余弦值;
(2)求點M到平面DB1C的距離;
(3)求二面角M―B1C―D的大小.
解析:(1)連A1D,則由A1D//B1C知,B1C與DM所成角即為A1D與DM所成角.連A1M,則由正方體棱長為2得A1D=,A1M=DM=
∴cos∠A1DM=,即直線B1C與DM所成角的余弦值是………………(6分)
(2)正方體AC1中,AB//DC,
AB平面DB1C得AB//平面DB1C,
點M在AB上
∴點M到平面DB1C的距離等于點B
到平面DB1C的距離,在平面BC1內(nèi)作
BO⊥B1C,則O為B1C中點.由DC⊥
平面BC1知BO⊥DC,
∵DCB1C=C.
∴BO⊥平面DB1C
∴BO長即為點B(點M)到平面DB1C的距離,由于
所以點M到平面DB1C的距離為.………………(文12分)
(3)由題設可知MB1=MC=.DC⊥B1C
設R為DB1中點,連MO,OR則有MO⊥B1C,OR⊥B1C,所以∠MOR為所求二面角M―B1C―D的平面角.連MR,則可計算得
MO=
MR=
∴∠MRO=Rt∠,從而cos∠MOR=即二面角
M―B1C―D的大小為………………(理12分)科目:高中數(shù)學 來源: 題型:
(09年武漢二中調(diào)研文)(12分)
已知函數(shù)
(1)若上存在反函數(shù),求實數(shù)a的取值范圍;
(2)在時,解關于x的不等式
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年武漢二中調(diào)研理)設為常數(shù),函數(shù)
(1)討論函數(shù)在區(qū)間()內(nèi)的單調(diào)性,并給予證明;
(2)設如果方程有實根,求實數(shù)a的取值范圍.查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com