如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4,AB=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時,PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的體積與側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一個多面體的直觀圖和三視圖如圖所示,其中M,N分別是AB,AC的中點(diǎn),G是DF上的一動點(diǎn).
(1)求該多面體的體積與表面積;
(2)求證:GN⊥AC;
(3)當(dāng)FG=GD時,在棱AD上確定一點(diǎn)P,使得GP∥平面FMC,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.
(1)求證:BD⊥平面PAC;
(2)若側(cè)棱PC上的點(diǎn)F滿足PF=7FC,求三棱錐PBDF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,圓錐的軸截面為等腰直角, 為底面圓周上一點(diǎn).
(1)若的中點(diǎn)為,,求證平面;
(2)如果,,求此圓錐的全面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABDA1B1D1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲.再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).
(1)當(dāng)圓柱底面半徑r取何值時,S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).
(2)若要制作一個如圖放置的、底面半徑為0.3米的燈籠,請作出燈籠的三視圖(作圖時,不需考慮骨架等因素).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,ABCD是正方形,平面ABCD,E,F(xiàn)是AC,PC的中點(diǎn).
(1)求證:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖C,D是以AB為直徑的圓上的兩點(diǎn),,F是AB上的一點(diǎn),且,將圓沿AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com