若點的坐標為,是拋物線的焦點,點在拋物線上移動時,使取得最小值的的坐標為( )
A. B. C. D.
D
【解析】
試題分析:求出焦點坐標和準線方程,把|MF|+|MA|轉(zhuǎn)化為|MA|+|PM|,利用 當P、A、M三點共線時,|MA|+|PM|取得最小值,把y=2代入拋物線y2="2x" 解得x值,即得M的坐標.解:由題意得 F(,0),準線方程為 x=-,設(shè)點M到準線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當P、A、M三點共線時,|MF|+|MA|取得最小值為|AP|=3-(-)=.把 y=2代入拋物線y2="2x" 得 x=2,故點M的坐標是(2,2),故選D.
考點:拋物線的定義和性質(zhì)
點評:本題考查拋物線的定義和性質(zhì)得應(yīng)用,解答的關(guān)鍵利用是拋物線定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想
科目:高中數(shù)學 來源: 題型:
FP1 |
FP2 |
FP3 |
FP1 |
FP2 |
FPn |
0 |
FP1 |
FP2 |
FPn |
FP1 |
FP2 |
FPN |
FP1 |
FP2 |
FPN |
0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓是拋物
線的一條切線.
(I)求橢圓的方程;
(II)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年上海市普陀區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com