設(shè)命題p:f(x)=
2x-m
在區(qū)間(2,+∞)上是減函數(shù);命題q:x1,x2是x2-ax-2=0(a∈[-1,1])的兩個(gè)實(shí)根,不等式m2+5m+3≥|x1-x2|對(duì)任意a∈[-1,1]都成立.若“p且q為真”,試求實(shí)數(shù)m的取值范圍.
分析:分別求出命題p,q為真命題的等價(jià)條件,然后利用“p且q”是真命題,求實(shí)數(shù)a的取值范圍即可.
解答:解:因?yàn)閒(x)=
2
x-m
在區(qū)間(2,+∞)上是減函數(shù);
所以m≤2,即命題p:m≤2…(3分)
命題q:|x1 -x2|=
(x1 +x2)2-4x1 x2
=
a2+8
≤3

∴m2+5m+3≥3,∴m≤-5或m≥0,即q:m≤-5或m≥0…(8分)
若“p且q為真”,則p真且q為真,
m≤2
m≤-5 ,或m≥0

即m∈(-∞,-5]∪[0,2]…(12分)
點(diǎn)評(píng):本題主要考查全稱命題和特稱命題的應(yīng)用以及復(fù)合命題的真假關(guān)系,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:f(x)=ax是減函數(shù),命題q:關(guān)于x的不等式x2+x+a>0的解集為R,如果“p或q”為真命題,“p且q”為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lg[(a2-1)x2+(a+1)x+1].設(shè)命題p:“f(x)的定義域?yàn)镽”;命題q:“f(x)的值域?yàn)镽”
(1)若命題p為真,求實(shí)數(shù)a的取值范圍;
(2)若命題q為真,求實(shí)數(shù)a的取值范圍;
(3)?p是q的什么條件?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:f(x)=
2x-m
在區(qū)間(1,+∞)上是減函數(shù);命題q;x1x2是方程x2-ax-2=0的兩個(gè)實(shí)根,不等式m2+5m-3≥|x1-x2|對(duì)任意實(shí)數(shù)α∈[-1,1]恒成立;若¬p∧q為真,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題P:f(x)=ax(a>0,a≠1)是減函數(shù),命題q:關(guān)于x的不等式x2+x+a>0的解集為R,如果“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案