如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點的等腰直角三角形,AB=1.現(xiàn)給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;
見解析
【解析】(解法1)選取條件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.
又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.
又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.
又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.
(解法2)選取條件②,
∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.
又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
(解法3)選取條件③,
若平面PAB⊥平面ABC,
∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第六章第1課時練習(xí)卷(解析版) 題型:解答題
已知f(x)=-3x2+a(6-a)x+b.
(1)解關(guān)于a的不等式f(1)>0;
(2)當(dāng)不等式f(x)>0的解集為(-1,3)時,求實數(shù)a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第5課時練習(xí)卷(解析版) 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點F是AB的中點.
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點,求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第4課時練習(xí)卷(解析版) 題型:解答題
如圖①,E、F分別是直角三角形ABC邊AB和AC的中點,∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C的中點.求證:
(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第4課時練習(xí)卷(解析版) 題型:填空題
a、b、c為三條不重合的直線,α、β、γ為三個不重合平面,現(xiàn)給出六個命題:
① a∥b;② a∥b;③ α∥β;
④ α∥β;⑤ α∥a;⑥ a∥α.
其中正確的命題是________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第3課時練習(xí)卷(解析版) 題型:填空題
如圖所示,b,c在平面α內(nèi),a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,E在線段AB上(C、D、E均異于A、B),則△ACD的形狀是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第3課時練習(xí)卷(解析版) 題型:解答題
如圖,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分別為線段AC、A1A、C1B的中點.
(1)證明:EF∥平面ABC;
(2)證明:C1E⊥平面BDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第八章第2課時練習(xí)卷(解析版) 題型:解答題
如圖所示,在三棱柱ABCA1B1C1中,M、N分別是BC和A1B1的中點.求證:MN∥平面AA1C1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第五章第6課時練習(xí)卷(解析版) 題型:填空題
根據(jù)市場調(diào)查結(jié)果,預(yù)測某種家用商品從年初開始的n個月內(nèi)累積的需求量Sn(萬件)近似地滿足關(guān)系式Sn=(21n-n2-5)(n=1,2,…,12),按此預(yù)測,在本年度內(nèi),需求量超過1.5萬件的月份是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com