已知函數(shù)為常數(shù))是實(shí)數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(1)求a的值; (2)若上恒成立,求的取值范圍;
(3)討論關(guān)于的根的個(gè)數(shù).
(1)a=0;(2)≤-1;(3)①當(dāng)時(shí),方程無解.
②當(dāng)時(shí),方程有一個(gè)根. ③當(dāng)時(shí),方程有兩個(gè)根.
(1)是奇函數(shù),則恒成立.
即
(2)又在[-1,1]上單調(diào)遞減,
令則
.
(3)由(I)知
令,
,
當(dāng)上為增函數(shù)
|
當(dāng)時(shí), 而,
、在同一坐標(biāo)系的大致圖象如圖所示,
∴①當(dāng)時(shí),方程無解.
②當(dāng)時(shí),方程有一個(gè)根.
③當(dāng)時(shí),方程有兩個(gè)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)
已知函數(shù) (為實(shí)常數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)
已知函數(shù) (為實(shí)常數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分16分)
已知函數(shù) (為實(shí)常數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省東莞市五校高三第一次聯(lián)考文科數(shù)學(xué)卷 題型:解答題
已知函數(shù)(為實(shí)常數(shù)).
(1)當(dāng)時(shí),求的最小值;
(2)若在上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011--2012學(xué)年山西省第一學(xué)期高一月考數(shù)學(xué)試卷 題型:解答題
已知函數(shù) (為實(shí)常數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式;
(3)設(shè),若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com