【題目】若變量,滿足約束條件,且最小值為7,則的值為( )

A. 1B. 2C. -2D. -1

【答案】B

【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,對a分類討論可得最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)即可求得a值.

解:由約束條件作出可行域如圖,

聯(lián)立方程組求得A2,1),B4,5),C12),

化目標(biāo)函數(shù)zax+3yy

當(dāng)a0時(shí),由圖可知,當(dāng)直線yAC時(shí),直線在y軸上的截距最小,z有最小值.

若過A,則2a+37,解得a2;若過C,則a+67,解得a1不合題意.

當(dāng)a0時(shí),由圖可知,當(dāng)直線yAB時(shí),直線在y軸上的截距最小,z有最小值.

若過A,則2a+37,解得a2,不合題意;若過B,則4a+157,解得a=﹣2,不合題意.

a的值為2

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如表所示:

(1)由頻率分布直方圖,估計(jì)這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計(jì)

不支持

支持

總計(jì)

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著智能手機(jī)的普及,使用手機(jī)上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費(fèi)者對手機(jī)流量的需求越來越大.長沙某通信公司為了更好地滿足消費(fèi)者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個(gè)城市(總?cè)藬?shù)、經(jīng)濟(jì)發(fā)展情況、消費(fèi)能力等方面比較接近)采用不同的定價(jià)方案作為試點(diǎn),經(jīng)過一個(gè)月的統(tǒng)計(jì),發(fā)現(xiàn)該流量包的定價(jià):(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:

(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合的關(guān)系?并指出是正相關(guān)還是負(fù)相關(guān);

(2)①求出關(guān)于的回歸方程;

②若該通信公司在一個(gè)類似于試點(diǎn)的城市中將這款流量包的價(jià)格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個(gè)月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,,.

參考公式:相關(guān)系數(shù),回歸直線方程,

其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形, ,且均為正三角形, 的重心.

(1)求證: 平面;

(2)求平面與平面所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),.

(1)當(dāng)時(shí),求函數(shù)的極小值;

(2)若當(dāng)時(shí),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若函數(shù)上無零點(diǎn),則( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:(其中為常數(shù)).

(1)若曲線與曲線有兩個(gè)不同的公共點(diǎn),求的取值范圍;

(2)當(dāng)時(shí),求曲線上的點(diǎn)與曲線上點(diǎn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大指出中國的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

1)求出2018年的利潤Lx)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額-成本)

22018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,矩形,、、,將矩形折疊,使O點(diǎn)落在線段上,設(shè)折痕所在直線的斜率為k,則k的取值范圍是( 

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案