已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.

(1) 求動(dòng)圓的圓心軌跡的方程;

(2) 是否存在直線,使過(guò)點(diǎn),并與軌跡交于兩點(diǎn),

且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

解析:(1)設(shè)為動(dòng)圓圓心,由題意知:到定直線的距離,

由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),為準(zhǔn)線,

∴ 動(dòng)圓的圓心的軌跡的方程為:        ………………………5分

(2)由題意可設(shè)直線的方程為,w.w.w.k.s.5.u.c.o.m    

   得

          ………………………7分

,             …………………………………9分

     …………………………………………11分

(舍去) …………………13分

,所以直線存在,其方程為:   ………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年山東卷理)(14分)

已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,其中.

(I)求動(dòng)圓圓心的軌跡的方程;

(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,當(dāng)變化且為定值時(shí),證明直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.

(1) 求動(dòng)圓的圓心軌跡的方程;

(2) 是否存在直線,使過(guò)點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.

(1) 求動(dòng)圓的圓心軌跡的方程;(2) 是否存在直線,使過(guò)點(diǎn)(0,1),并與軌跡交于兩點(diǎn),且滿足?若存在,求出直線的方程;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切.

(1) 求動(dòng)圓的圓心軌跡的方程;

(2) 是否存在直線,使過(guò)點(diǎn),并與軌跡交于兩點(diǎn),且滿足

?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三第二次階段性考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分15分) 已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.

(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;

(Ⅱ)若動(dòng)直線與軌跡處的切線平行,且直線與橢圓交于兩點(diǎn),問(wèn):是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案