【題目】

(2015·重慶)如題(20)圖,三棱錐中,平面平面,,點(diǎn)D、E在線段上,且,點(diǎn)在線段上,且


(1)證明:平面.
(2)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng)。

【答案】
(1)

證明:如題(20)圖。由 D E = E C , P D = P C 知, E 為等腰 △ P D C 中 D C 邊的中點(diǎn),故 P E ⊥ A C ,

又平面平面,平面.平面,平面,,

所以平面,從而.

,故.

從而與平面內(nèi)兩條相交直線都垂直,

所以平面。


(2)

.


【解析】
1、證明:如題(20)圖。由知,為等腰邊的中點(diǎn),故,

又平面平面,平面.平面,平面,,
所以平面,從而.
,故.
從而與平面內(nèi)兩條相交直線,都垂直,
所以平面。
2、設(shè),則在直角中,
從而
,知,得,故
。
,
從而四邊形DFBC的面積為
由小題1知,平面,所以為四棱錐的高。
在直角中,,
體積
故得,解得,由于,可得
所以。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解空間中直線與平面之間的位置關(guān)系的相關(guān)知識(shí),掌握直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)在一次馬拉松比賽中,35名運(yùn)動(dòng)員的成績(jī)(單位:分鐘)如圖I所示

若將運(yùn)動(dòng)員按成績(jī)由好到差編為1~35號(hào),再用系統(tǒng)抽樣方法從中抽取7人,則其中成績(jī)?cè)趨^(qū)間[139,151]上的運(yùn)動(dòng)員人數(shù)為( )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又存在零點(diǎn)的是( )
A.y=lnx
B.
C.y=sinx
D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xoy中,已知橢圓:的離心率為,左、右焦點(diǎn)分別是F1,F2 , 以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)橢圓:為橢圓上任意一點(diǎn),過點(diǎn)的直線y=kx=m交橢圓,兩點(diǎn),射線交橢圓于點(diǎn).
(1)求的值;
(1)求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖北)《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑.
在如圖所示的陽(yáng)馬P-ABCD中,側(cè)棱PD底面ABCD,且PD=CD,點(diǎn)E是BC的中點(diǎn),連接DE,BD,BE
(I)證明:DE底面PBC,試判斷四面體EBCD是否為鱉臑. 若是,寫出其四個(gè)面的直角(只需寫出結(jié)論);若不是,請(qǐng)說明理由;
(Ⅱ)記陽(yáng)馬的體積為,四面體的體積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x3+ax+b=0,其中a,b均為實(shí)數(shù),下列條件中,使得該三次方程中僅有一個(gè)實(shí)根的是 ,(寫出所有正確條件的編號(hào))
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·陜西)設(shè)f(x)=lnx, 0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),則下列關(guān)系式中正確的是( )
A.q=r<p
B.q=r>p
C.p=r<q
D.p=r>q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,且(n=1,2,...).記
集合
(1)(Ⅰ)若,寫出集合M的所有元素;
(2)(Ⅱ)若集合M存在一個(gè)元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(3)(Ⅲ)求集合M的元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)發(fā)f(x)=(x+1)lnx﹣ax+2.
(1)當(dāng)a=1時(shí),求在x=1處的切線方程;
(2)若函數(shù)f(x)在定義域上具有單調(diào)性,求實(shí)數(shù)a的取值范圍;
(3)求證: ,n∈N*

查看答案和解析>>

同步練習(xí)冊(cè)答案