【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是

【答案】
【解析】解:區(qū)域D對應(yīng)的平面區(qū)域為半徑為1的圓,面積為S=π,
區(qū)域E對應(yīng)的區(qū)域為三角形AOC,
,解得 ,即C( ),
A(0,1),
則三角形AOC的面積S= ,
則對應(yīng)的概率為 =
所以答案是:

【考點精析】通過靈活運用二元一次不等式(組)所表示的平面區(qū)域和幾何概型,掌握不等式組表示的平面區(qū)域是各個不等式所表示的平面區(qū)域的公共部;幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點.

(1)求橢圓方程;

(2)設(shè)不過原點O的直線,與該橢圓交于P、Q兩點,直線OP、OQ的斜率依次為,滿足,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x3+2ax2-3a2x(a∈R且a≠0).

(1)當a=-1時,求曲線y=f(x)在點(-2,f(-2))處的切線方程;

(2)當a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;

(3)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3﹣12x+b,則下列結(jié)論正確的是(
A.函數(shù)f(x)在(﹣∞,﹣1)上單調(diào)遞增
B.函數(shù)f(x)在(﹣∞,﹣1)上單調(diào)遞減
C.若b=﹣6,則函數(shù)f(x)的圖象在點(﹣2,f(﹣2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個公共點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是復(fù)平面上的四個點,且向量對應(yīng)的復(fù)數(shù)分別為z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2為實數(shù),a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

單價x(元)

9

9.2

9.4

9.6

9.8

10

銷量y(件)

100

94

93

90

85

78

(1)求回歸直線方程求回歸直線方程.

(2)預(yù)計在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x∈R,y∈R,若復(fù)數(shù)(x2+y2-4)+(x-y)i是純虛數(shù),則點(x,y)的軌跡是(  )

A. 以原點為圓心,以2為半徑的圓

B. 兩個點,其坐標為(2,2),(-2,-2)

C. 以原點為圓心,以2為半徑的圓和過原點的一條直線

D. 以原點為圓心,以2為半徑的圓,并且除去兩點(,),(-,-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,分別從兩廠生產(chǎn)的產(chǎn)品中各隨機抽取10件,測量產(chǎn)品中某種元素的含量(單位:毫克),其測量數(shù)據(jù)的莖葉圖如圖所示.

規(guī)定:當產(chǎn)品中此種元素的含量大于18毫克時,認定該產(chǎn)品為優(yōu)等品.

(1)試比較甲、乙兩廠生產(chǎn)的產(chǎn)品中該種元素含量的平均值的大小;

(2)從乙廠抽出的上述10件產(chǎn)品中隨機抽取3件,求抽到的3件產(chǎn)品中優(yōu)等品數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案