【題目】畫出函數(shù)f(x)=-x2+2x+3的圖像,并根據(jù)圖像回答下列問題:
(1)比較f(0)、f(1)、f(3)的大;
(2)若x1<x2<1,比較f(x1)與f(x2)的大。
(3)求函數(shù)f(x)的值域.
【答案】(1);(2);(3)
【解析】
(1)通過列表、瞄點,畫出函數(shù)圖像,根據(jù)圖像判斷三個函數(shù)值的大小.(2)注意到函數(shù)開口向下,對稱軸為,故在為增函數(shù),故.(3)根據(jù)圖像易得函數(shù)在對稱軸處取得最大值為,沒有最小值,由此求得函數(shù)的值域.
因為函數(shù)f(x)=-x2+2x+3的定義域為R,
列表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -5 | 0 | 3 | 4 | 3 | 0 | -5 | … |
描點,連線,得函數(shù)圖像如圖:
(1)根據(jù)圖像,容易發(fā)現(xiàn)f(0)=3,
f(1)=4,f(3)=0,
所以f(3)<f(0)<f(1).
(2)根據(jù)圖像,容易發(fā)現(xiàn)當x1<x2<1時,有f(x1)<f(x2).
(3)根據(jù)圖像,可以看出函數(shù)的圖像是以(1,4)為頂點,開口向下的拋物線,因此,函數(shù)的值域為(-∞,4].
科目:高中數(shù)學 來源: 題型:
【題目】為了美化校園環(huán)境,學校打算在蘭蕙廣場上建造一個矩形花園,中間有三個完全一樣 的矩形花壇,每個花壇的面積均為294平方米,花壇四周的過道寬度均為2米,如圖所示,設矩形花壇的長為米,寬為米,整個矩形花園的面積為平方米.
(1)試用、表示;
(2)為了節(jié)約用地,當矩形花壇的長為多少米時,新建矩形花園占地最少,占地最少為多少平方米?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】寫出下列各隨機試驗的樣本空間:
(1)采用抽簽的方式,隨機選擇一名同學,并記錄其性別;
(2)采用抽簽的方式,隨機選擇一名同學,觀察其ABO血型;
(3)隨機選擇一個有兩個小孩的家庭,觀察兩個孩子的性別;
(4)射擊靶3次,觀察各次射擊中靶或脫靶情況;
(5)射擊靶3次,觀察中靶的次數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A. 命題的否定是:
B. 命題中,若,則的否命題是真命題
C. 如果為真命題,為假命題,則為真命題,為假命題
D. 是函數(shù)的最小正周期為的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年某地初中畢業(yè)升學體育考試規(guī)定:考生必須參加長跑.擲實心球.1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學校在初三上學期開始時,為掌握全年級學生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規(guī)則如表1:
(1)規(guī)定:學生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學生中,男生跳繩個數(shù)大等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學生測試成績,能否有99%的把握認為學生1分鐘跳繩成績優(yōu)秀與性別有關?
附:參考公式
臨界值表:
(2)根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步.假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,全年級恰有2000名學生,所有學生的跳繩個數(shù)X服從正態(tài)分布N(μ,σ2)(用樣本數(shù)據(jù)的平值和方差估計總體的期望和方差,各組數(shù)據(jù)用中點值代替)
①估計正式測試時,1分鐘跳182個以上的人數(shù)(結果四舍五入到整數(shù));
②若在全年級所有學生中任意選取3人,正式測試時1分鐘跳195個以上的人數(shù)為ξ,求ξ占的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種零件,每個零件的成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,決定當一次訂購量超過100個時,每多訂購一個,訂購的全部零件的出廠單價就降低0.02元,但實際出廠單價不能低于51元.
(1)當一次訂購量為多少個時,零件的實際出廠單價恰降為51元?
(2)設一次訂購量為個,零件的實際出廠單價為元.寫出函數(shù)的表達式;
(3)當銷售商一次訂購500個零件時,該廠獲得的利潤是多少元?如果訂購1000個,利潤又是多少元?(工廠售出一個零件的利潤=實際出廠單價-成本)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標準是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:
時間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時間段發(fā)生的頻率視為概率,假設每次路上開車花費的時間視為用車時間,范圍為分鐘.
(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com