1
 0.5
 (
1
x
+lnx)dx
=
 
分析:根據(jù)(xlnx)′=lnx+1可知lnx+
1
x
的原函數(shù),然后根據(jù)積分的基本定理進(jìn)行計(jì)算即可.
解答:解:由于
1
 0.5
 (
1
x
+lnx)dx

=
1
 0.5
 (
1
x
-1+lnx+1)dx

=(lnx-x+xlnx)
|
1
0.5

=ln1-1+1×ln1-(ln
1
2
-
1
2
+
1
2
ln
1
2

=
3
2
ln2-
1
2

故答案為:
3
2
ln2-
1
2
點(diǎn)評(píng):本題主要考查定積分的計(jì)算,關(guān)鍵是找出被積函數(shù)的原函數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)

(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)
;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈R.
(I)若x>0,y>0且
1
x
+
4
y
=1
,求x+y的最小值;
(II)若f(x)=
1,x≥0
-1,x<0
,求不等式x+(x+2)•f(x+2)≤5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•龍巖二模)已知a為實(shí)數(shù),x=1是函數(shù)f(x)=
1
2
x2-6x+alnx
的一個(gè)極值點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間(2m-1,m+1)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=x+
1
x
,對(duì)于任意x≠0和x1,x2∈[1,5],有不等式|λg(x)|-5ln5≥|f(x1)-f(x2)|恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•臨沂二模)下面四個(gè)命題:
①函數(shù)y=
1
x
在(2,
1
2
)處的切線與直線2x-y+1=0垂直;
②已知a=
π
0
(sint+cost)dt,則(x-
1
ax
6展開(kāi)式中的常數(shù)項(xiàng)為-
5
2
,
③在邊長(zhǎng)為1的正方形ABCD內(nèi)(包括邊界)有一點(diǎn)M,則△AMB的面積大于或等于
1
4
的概率為
3
4

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13,079,則其兩個(gè)變量有關(guān)系的可能性是99.9%.
P(K2≥k0 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
其中所有正確的命題序號(hào)是
②④
②④

查看答案和解析>>

同步練習(xí)冊(cè)答案