已知函數(shù))的最小正周期為
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移個(gè)單位,得到函數(shù)的圖象.若上至少含有個(gè)零點(diǎn),求的最小值.

(1) (2)

解析試題分析:
(1)要求單調(diào)區(qū)間,首先要對(duì)進(jìn)行化簡(jiǎn)得到最間形式,依次利用正弦二倍角,降冪公式,和輔助角公式就可以得到,進(jìn)而利用復(fù)合函數(shù)的單調(diào)性內(nèi)外結(jié)合求得函數(shù)的單調(diào)區(qū)間.
(2)利用“左加右減,上加下減”得到平移后的函數(shù)解析式,令,求出所有的零點(diǎn),在根據(jù)上至少含有個(gè)零點(diǎn),得到b的取值范圍,進(jìn)而得到b的最小值.
試題解析:
(1)由題意得
                2分
由周期為,得.得         4分
由正弦函數(shù)的單調(diào)增區(qū)間得,得
所以函數(shù)的單調(diào)增區(qū)間是       6分
(2)將函數(shù)的圖象向左平移個(gè)單位,再向上平移1個(gè)單位,
得到的圖象,所以          8分
,得:       10分
所以在每個(gè)周期上恰好有兩個(gè)零點(diǎn),若上有個(gè)零點(diǎn),
不小于第個(gè)零點(diǎn)的橫坐標(biāo)即可,即的最小值為   12分
考點(diǎn):零點(diǎn) 單調(diào)性 輔助角公式 正余弦倍角公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2sin.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若f=-,求f(x0)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象經(jīng)過點(diǎn).
(1)求實(shí)數(shù)的值;
(2)設(shè),求函數(shù)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角α的終邊過點(diǎn)(a,2a)(a≠0),求α的三角函數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(-3,).
(1)求sin 2α-tan α的值;
(2)若函數(shù)f(x)=cos(x-α)cos α-sin(x-α)sin α,求函數(shù)y=f-2f2(x)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,設(shè)函數(shù).
(1)求函數(shù)上的單調(diào)遞增區(qū)間;
(2)在中,,分別是角,,的對(duì)邊,為銳角,若,的面積為,求邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)f(x)=sin(ωxφ)ω>0,|φ|<的部分圖像如圖Z3-4所示,將yf(x)的圖像向右平移個(gè)單位長(zhǎng)度后得到函數(shù)yg(x)的圖像.
 
(1)求函數(shù)yg(x)的解析式;
(2)在△ABC中,它的三個(gè)內(nèi)角滿足2sin2gC+1,且其外接圓半徑R=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)求的最小正周期和最小值; 
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角、的對(duì)邊分別為、,且
(Ⅰ)求角的大;
(Ⅱ)求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案