【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)
經(jīng)常使用網(wǎng)絡(luò)外賣 | 偶爾或不用網(wǎng)絡(luò)外賣 | 合計 | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計 | 110 | 90 | 200 |
(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【答案】(1)不能在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣情況與性別有關(guān);
(2)①;②答案見解析.
【解析】試題分析:
(1)由題意結(jié)合列聯(lián)表計算可得可知的觀測值 ,所以不能在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣情況與性別有關(guān);
(2)①依題意可得經(jīng)常使用網(wǎng)絡(luò)外賣的有人,偶爾或不用網(wǎng)絡(luò)外賣的有人.則選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率為.
②由題意可得,隨機變量服從二項分布,則; .
試題解析:
(1)由列聯(lián)表可知的觀測值 ,
所以不能在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣情況與性別有關(guān).
(2)①依題意,可知所抽取的5名女網(wǎng)民中,經(jīng)常使用網(wǎng)絡(luò)外賣的有(人),
偶爾或不用網(wǎng)絡(luò)外賣的有(人).
則選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率為.
②由列聯(lián)表,可知抽到經(jīng)常使用網(wǎng)絡(luò)外賣的網(wǎng)民的概率為,
將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用網(wǎng)絡(luò)外賣的市民的概率為.
由題意得,∴; .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項公式;
(3)設(shè)cn=n(3﹣bn),求數(shù)列{cn}的前n項和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)設(shè),數(shù)列的前項和為,求使的的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠ACB=90°,SA⊥平面ABC,AD⊥SC.求證:
(1)BC⊥平面SAC;
(2)AD⊥平面SBC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2sin2x的圖象向左平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com