若圓C過點M(0,1)且與直線相切,設圓心C的軌跡為曲線E,A、B(A在y軸的右側)為曲線E上的兩點,點,且滿足

   (Ⅰ)求曲線E的方程;

   (Ⅱ)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;

   (Ⅲ)分別過A、B作曲線E的切線,兩條切線交于點,若點恰好在直線上,求證:t與均為定值.

 

【答案】

(Ⅰ).(Ⅱ).(Ⅲ)t與均為定值.

【解析】(I)由于圓心C到定點M的距離與到定直線y=-1的距離相等,所以其軌跡為拋物線其方程為.

(II)因為t=6,所以直線AB的斜率為,直線AB的方程是.然后與拋物線方程聯(lián)立求出A、B的坐標.再利用導數(shù)求出點A處的切線的斜率,進而確定NA的斜率,求出NA的方程.再求出AB的垂直平分線方程與NA的方程聯(lián)立,可求出圓心N的坐標,進而可求出半徑的值,寫出圓N的方程.

(III) 設,由題意可知,從而可知是方程的兩根,得到,

再根據(jù)A,P,B共線,斜率相等可求出t的值.

然后根據(jù)

可證明也為定值

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若圓C過點M(0,1)且與直線l:y=-1相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點P(0,t)(t>0),且滿足
AP
PB
(λ>1)

(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為
1
2
,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與
QA
QB
均為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三上學期期末考試理科數(shù)學(解析版) 題型:解答題

.(本題滿分12分)若圓C過點M(0,1)且與直線相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點

(I)求曲線E的方程;    (II)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;

(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線上,求證:t與均為定值。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省“鄂南高中、華師一附中、黃岡中學、黃石二中、荊州中學、襄樊四中、襄樊五中、孝感高中”八校高三第二次聯(lián)考數(shù)學試卷(理科))(解析版) 題型:解答題

若圓C過點M(0,1)且與直線l:y=-1相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點
(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與均為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年廣東省高考數(shù)學模擬試卷3(理科)(解析版) 題型:解答題

若圓C過點M(0,1)且與直線l:y=-1相切,設圓心C的軌跡為曲線E,A、B為曲線E上的兩點,點
(I)求曲線E的方程;
(II)若t=6,直線AB的斜率為,過A、B兩點的圓N與拋物線在點A處共同的切線,求圓N的方程;
(III)分別過A、B作曲線E的切線,兩條切線交于點Q,若點Q恰好在直線l上,求證:t與均為定值.

查看答案和解析>>

同步練習冊答案