【題目】已知直線.

(1)當(dāng)時,求的單調(diào)區(qū)間;

(2)若對任意時,恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)單減,在單增.(2)

【解析】

(1)求出fx)的導(dǎo)數(shù),得到f′(x),結(jié)合可解得的范圍,即可求出函數(shù)的單調(diào)區(qū)間.

2)通過討論a的范圍,得到導(dǎo)函數(shù)的正負(fù),進(jìn)而研究函數(shù)fx)的單調(diào)性,求得不同情況下的函數(shù)fx)的最小值,解出滿足a的范圍即可.

(1)當(dāng)時,,所以,

,且單調(diào)遞增,所以當(dāng)時,;

當(dāng)時,,所以單減,在單增.

(2)因?yàn)?/span>,,而當(dāng)時,.

①當(dāng),即時,,

所以單調(diào)遞增,所以,

上單調(diào)遞增,所以,符合題意,所以符合題意.

②當(dāng),即時,單調(diào)遞增,所以,取,則,

所以存在唯一,使得

所以當(dāng)時,,當(dāng)時,

進(jìn)而在單減,在單增.

當(dāng)時,,因此上單減,

所以.因而與題目要求在,恒成立矛盾,此類情況不成立,舍去.

綜上所述,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】觀察以下等式:

1312

13+23=(1+22

13+23+33=(1+2+32

13+23+33+43=(1+2+3+42

1)請用含n的等式歸納猜想出一般性結(jié)論,并用數(shù)學(xué)歸納法加以證明.

2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且ann3+n,求S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓關(guān)于直線對稱,則的最小值為__________.由點(diǎn)向圓所作兩條切線,切點(diǎn)記為,當(dāng)取最小值時,外接圓的半徑為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個正方形花圃被分成5.

1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍(lán)、綠4種顏色不同的花,求有多少種不同的種植方法?

2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于定義在上的函數(shù),有下列四個命題:

①若是奇函數(shù),則的圖象關(guān)于點(diǎn)對稱;

②若對,有,則的圖象關(guān)于直線對稱;

③若對,有,則的圖象關(guān)于點(diǎn)對稱;

④函數(shù)與函數(shù)的圖像關(guān)于直線對稱.

其中正確命題的序號為__________.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于分為優(yōu)秀,分以下為非優(yōu)秀,統(tǒng)計(jì)成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部人中隨機(jī)抽取人為優(yōu)秀的概率為.

I)請完成列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

()根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過的前提下認(rèn)為成績與班級有關(guān)系?

參考公式和臨界值表:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)2018年招聘員工,其中,,,五種崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:

崗位

男性

應(yīng)聘人數(shù)

男性

錄用人數(shù)

男性

錄用比例

女性

應(yīng)聘人數(shù)

女性

錄用人數(shù)

女性

錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(1)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

(2)從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;

(3)表中,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x22x3≤0},B{x|x22mx+m24≤0xR,mR}

1)若ABA,求實(shí)數(shù)m的取值;

2)若AB{x|0≤x≤3},求實(shí)數(shù)m的值;

(3)若A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車已成為一種時髦的新型環(huán)保交通工具,某共享單車公司為了拓展市場,對兩個品牌的共享單車在編號分別為的五個城市的用戶人數(shù)(單位:十萬)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下:

城市

品牌

1

2

3

4

5

A品牌

3

4

12

6

8

B品牌

4

3

7

9

5

(Ⅰ)若共享單車用戶人數(shù)超過50萬的城市稱為“優(yōu)城”,否則稱為“非優(yōu)城”,據(jù)此判斷能否有85%的把握認(rèn)為“優(yōu)城”和共享單車品牌有關(guān)?

(Ⅱ)若不考慮其它因素,為了拓展市場,對A品牌要從這五個城市選擇三個城市進(jìn)行宣傳,

(。┣蟪鞘2被選中的概率;

(ⅱ)求在城市2被選中的條件下城市3也被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案