【題目】某服裝銷售公司進行關(guān)于消費檔次的調(diào)查,根據(jù)每人月均服裝消費額將消費檔次分為0-500元;500-1000元;1000-1500元;1500-2000元四個檔次,針對兩類人群各抽取100人的樣本進行統(tǒng)計分析,各檔次人數(shù)統(tǒng)計結(jié)果如下表所示:
0~ 500元 | 500~ 1000元 | 1000~ 1500元 | 1500~ 2000元 | |
A類 | 20 | 50 | 20 | 10 |
B類 | 50 | 30 | 10 | 10 |
月均服裝消費額不超過1000元的人群視為中低消費人群,超過1000元的視為中高收入人群.
(Ⅰ)從類樣本中任選一人,求此人屬于中低消費人群的概率;
(Ⅱ)從兩類人群中各任選一人,分別記為甲、乙,估計甲的消費檔次不低于乙的消費檔次的概率;
(Ⅲ)以各消費檔次的區(qū)間中點對應(yīng)的數(shù)值為該檔次的人均消費額,估計兩類人群哪類月均服裝消費額的方差較大(直接寫出結(jié)果,不必說明理由).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求過點且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實數(shù),若有兩個極值點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知等腰梯形ABCD中,AB∥CD,AD=AB=CD,M是的CD的中點.N是AC與BM的交點,將△BCM沿BM向上翻折成△BPM,使平面BPM⊥平面ABMD
(I)求證:AB⊥PN.
(Ⅱ)若E為PA的中點.求證:EN∥平面PDM.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿足 , ,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.(,)
B.(,3)
C.( , 1)
D.( , 1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是由個實數(shù)組成的有序數(shù)組,滿足下列條件:①,;②;③,
.
(Ⅰ)當(dāng)時,寫出滿足題設(shè)條件的全部;
(Ⅱ)設(shè),其中,求的取值集合;
(Ⅲ)給定正整數(shù),求的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐S﹣ABC中,AB⊥BC,AB=BC= , SA=SC=2,二面角S﹣AC﹣B的余弦值是 , 若S、A、B、C都在同一球面上,則該球的表面積是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,直線,點在直線上移動, 是線段與軸的交點, .
(Ⅰ) 求動點的軌跡的方程;
(Ⅱ)直線與軸相交于點,過的直線交軌跡于兩點,
試探究點與以為直徑的圓的位置關(guān)系,并加以說明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=a+ 為定義在R上的奇函數(shù).
(1)求a的值;
(2)判斷函數(shù)f(x)在(﹣∞,+∞)的單調(diào)性并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com