為喜迎馬年新春佳節(jié),某商場在正月初六進(jìn)行抽獎促銷活動,當(dāng)日在該店消費滿500元的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標(biāo)有 “馬”“上”“有”“錢”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“錢”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“馬”“上”“有”“錢”字的球為一等獎;不分順序取到標(biāo)有“馬”“上”“有”“錢”字的球,為二等獎;取到的4個球中有標(biāo)有“馬”“上”“有”三個字的球為三等獎.
(1)求分別獲得一、二、三等獎的概率;
(2)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.
(1),,;(2)詳見解析

試題分析:(1)首先設(shè)“摸到一等獎、二等獎、三等獎”分別為事件A,B,C.有放回地取四次球,相當(dāng)于四次獨立重復(fù)試驗,且每次試驗“馬”“上”“有”“錢”四個字出現(xiàn)的概率均為,可依據(jù)一等獎、二等獎、三等獎各自的條件求出相應(yīng)的概率值;
(2)設(shè)摸球的次數(shù)為,則的所有可能取值為1、2、3、4.
四次獨立重復(fù)試驗,每次取到“錢”發(fā)生的概率為,不發(fā)生的概率則為,根據(jù)題意可求的分布列及數(shù)學(xué)期望.
解:(1)設(shè)“摸到一等獎、二等獎、三等獎”分別為事件A,B,C.     
(列式正確,計算錯誤,扣1分)   2分
(列式正確,計算錯誤,扣1分)        4分
三等獎情況有:“馬,馬,上,有”,“馬,上,上,有”,“馬,上,有”三種情況.
    6分
(2)設(shè)摸球的次數(shù)為,則的所有可能取值為1、2、3、4.

                  10分
故取球次數(shù)的分布列為:

1
2
3
4
P




 
                  12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有甲、乙兩個班進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
 
優(yōu)秀
非優(yōu)秀
總計
甲班
20
 
 
乙班
 
60
 
總計
 
 
210
 
已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為
(1)請完成上面的2×2列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”.
附:,其中.
參考數(shù)據(jù)
當(dāng)≤2.706時,無充分證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián).
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.
(1)若用數(shù)組(x,y,z)中的x,y,z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;
(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個口袋中裝有大小相同的2個紅球,3個黑球和4個白球,從口袋中一次摸出一個球,摸出的球不再放回.
(1)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(2)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2012·課標(biāo)全國卷]某一部件由三個電子元件按下圖方式連接而成,元件1或元件2正常工作,且元件3正常工作,則部件正常工作.設(shè)三個電子元件的使用壽命(單位:小時)均服從正態(tài)分布N(1000,502),且各個元件能否正常工作相互獨立,那么該部件的使用壽命超過1000小時的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·寧波調(diào)研]甲、乙兩人下棋,和棋的概率為,乙獲勝的概率為,則下列說法正確的是(  )
A.甲獲勝的概率是B.甲不輸?shù)母怕适?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052148461338.png" style="vertical-align:middle;" />
C.乙輸了的概率是D.乙不輸?shù)母怕适?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052148461338.png" style="vertical-align:middle;" />

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

高二年級的一個研究性學(xué)習(xí)小組在網(wǎng)上查知,某珍貴植物種子在一定條件下發(fā)芽成功的概率為,該研究性學(xué)習(xí)小組又分成兩個小組進(jìn)行驗證性實驗.
(1)第1組做了5次這種植物種子的發(fā)芽實驗(每次均種下一粒種子),求他們的實驗至少有3次成功的概率;
(2)第二小組做了若干次發(fā)芽試驗(每次均種下一粒種子),如果在一次實驗中種子發(fā)芽成功就停止實驗,否則將繼續(xù)進(jìn)行下次實驗,直到種子發(fā)芽成功為止,但發(fā)芽實驗的次數(shù)最多不超過5次,求第二小組所做種子發(fā)芽實驗的次數(shù)的概率分布列和期望.      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在30瓶飲料中,有3瓶已過了保質(zhì)期,從這30瓶飲料中任取2瓶,則至少取到1瓶已過保質(zhì)期的概率為________(結(jié)果用最簡分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

隨機(jī)變量的取值為0,1,2,若,,則________.

查看答案和解析>>

同步練習(xí)冊答案