【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)是否存在實(shí)數(shù),使得函數(shù)上的最小值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,極小值為.(2)見(jiàn)解析.

【解析】試題分析:

(1)首先對(duì)函數(shù)求導(dǎo),然后結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性可得函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,極小值為

(2)由題意結(jié)合(1)的結(jié)論分類(lèi)討論可得不存在滿(mǎn)足題意的實(shí)數(shù)a.

試題解析:

由題意知, .

(1)由,解得,所以函數(shù)的單調(diào)增區(qū)間是;

,解得,所以函數(shù)的單調(diào)減區(qū)間是.當(dāng)時(shí),函數(shù)有極小值為.

(2)由(1)可知,當(dāng)時(shí), 單調(diào)遞減,當(dāng)時(shí), 單調(diào)遞增.

①若,即時(shí),函數(shù)上為增函數(shù),故函數(shù)的最小值為,顯然,故不滿(mǎn)足條件.

②若,即時(shí),函數(shù)上為減函數(shù),在上為增函數(shù),故函數(shù)的最小值為,即,解得,而,故不滿(mǎn)足條件.

③若,即時(shí),函數(shù)在在上為減函數(shù),故函數(shù)的最小值為,即,而不滿(mǎn)足條件,綜上所述,這樣的不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌汽車(chē)的店,對(duì)最近100份分期付款購(gòu)車(chē)情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷(xiāo)一輛該品牌汽車(chē),若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車(chē)的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再?gòu)某槿〉?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面與底面垂直, 為正三角形, , ,點(diǎn)分別為線段的中點(diǎn), 分別為線段上一點(diǎn),且, .

(1)當(dāng)時(shí),求證: 平面;

(2)試問(wèn):直線上是否存在一點(diǎn),使得平面與平面所成銳二面角的大小為,若存在,求的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問(wèn)題,在火車(chē)站分別隨機(jī)調(diào)研了名女性或名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)

(2)能否在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.

附:

參考公式:

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象上存在關(guān)于軸對(duì)稱(chēng)的點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班位女同學(xué), 位男同學(xué)中隨機(jī)

抽取一個(gè)容量為的樣本進(jìn)行分析.

(Ⅰ)如果按性別比例分層抽樣,求樣本中男生、女生人數(shù)分別是多少;

(Ⅱ)隨機(jī)抽取位同學(xué),數(shù)學(xué)成績(jī)由低到高依次為: ;物理成績(jī)由低到高依次為: ,若規(guī)定分(含分)以上為優(yōu)秀,記為這位同學(xué)中數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.

(1)4個(gè)人分到甲學(xué)校,2個(gè)人分到乙學(xué)校,1個(gè)人分到丙學(xué)校,有多少種不同的分配方案?

(2)一所學(xué)校去4個(gè)人,另一所學(xué)校去2個(gè)人,剩下的一個(gè)學(xué)校去1個(gè)人,有多少種不同的分配方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案