精英家教網 > 高中數學 > 題目詳情

已知直線(t為參數)經過橢圓為參數)的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設直線l與橢圓C交于A、B兩點,求|FA|·|FB|的最大值和最小值.

(Ⅰ)-1; (Ⅱ)當sinα=0時,|FA|·|FB|取最大值3;當sinα=±1時,|FA|·|FB|取最小值

解析試題分析:(Ⅰ)利用公式將橢圓C的參數方程化為普通方程,求出左焦點F代入直線方程求解m;(Ⅱ)將l的參數方程代入橢圓C的普通方程,借助t的幾何含義求解|FA|·|FB|的最大值和最小值.
試題解析:(Ⅰ)將橢圓C的參數方程化為普通方程,得=1.
a=2,b=,c=1,則點F坐標為(-1,0).
l是經過點(m,0)的直線,故m=-1.
(Ⅱ)將l的參數方程代入橢圓C的普通方程,并整理,得
(3cos2α+4sin2α)t2-6tcosα-9=0.
設點A,B在直線參數方程中對應的參數分別為t1,t2,則
|FA|·|FB|=|t1t2|=
當sinα=0時,|FA|·|FB|取最大值3;
當sinα=±1時,|FA|·|FB|取最小值
考點:1.參數方程;2.參數t的幾何含義.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

長為3的線段兩端點A,B分別在x軸正半軸和y軸的正半軸上滑動,,點P的軌跡為曲線C.
(1)以直線AB的傾斜角為參數,求曲線C的參數方程;
(2)求點P到點D距離的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,求過橢圓 (φ為參數)的右焦點,且與直線 (t為參數)平行的直線的普通方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

以坐標原點O為極點,軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為:,曲線C2的參數方程為:,點N的極坐標為
(Ⅰ)若M是曲線C1上的動點,求M到定點N的距離的最小值;
(Ⅱ)若曲線C1曲線C2有有兩個不同交點,求正數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題10分)選修4—4:坐標系與參數方程  
已知曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為。
(Ⅰ)把的參數方程化為極坐標方程;
(Ⅱ)求交點的極坐標()。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知圓的參數方程為為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓的極坐標方程為
(1)將圓的參數方程化為普通方程,將圓的極坐標方程化為直角坐標方程;
(2)圓,是否相交?若相交,請求出公共弦長,若不相交,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線C的參數方程為為參數,).求曲線C的普通方程。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(考生注意:只能從A,B,C中選擇一題作答,并將答案填寫在相應字母后的橫線上,若多做,則按所做的第一題評閱給分.)
A.選修4-1:幾何證明選講
已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則BD的值為____.

B.選修4-4:坐標系與參數方程
在極坐標系中,已知圓與直線相切,求實數a的值______.
C.選修4-5:不等式選講
不等式對任意實數恒成立,求實數的取值范圍____.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

某班的40位同學已編號1,2,3,…,40,為了解該班同學的作業(yè)情況,老師收取了號碼能被5整除的8名同學的作業(yè)本,這里運用的抽樣方法是( )

A.簡單隨機抽樣B.抽簽法C.系統(tǒng)抽樣D.分層抽樣

查看答案和解析>>

同步練習冊答案