已知直線與圓交于兩點(diǎn),且向量滿足,其中為坐標(biāo)原點(diǎn),則實(shí)數(shù)的值為   ▲  

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-3)2+(y-4)2=16,直線l1:kx-y-k=0.
(1)若l1與圓交于兩個(gè)不同點(diǎn)P,Q,求實(shí)數(shù)k的取值范圍;
(2)若PQ的中點(diǎn)為M,A(1,0),且l1與l2:x+2y+4=0的交點(diǎn)為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省杭州地區(qū)七校高二期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓的方程為,過點(diǎn)作直線與圓交于、兩點(diǎn)。

(1)若坐標(biāo)原點(diǎn)O到直線AB的距離為,求直線AB的方程;

(2)當(dāng)△的面積最大時(shí),求直線AB的斜率;

(3)如圖所示過點(diǎn)作兩條直線與圓O分別交于R、S,若,且兩角均為正角,試問直線RS的斜率是否為定值,并說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆遼寧省盤錦市高三第二次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn), 的距離之和為,且其焦距為

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線與橢圓交于不同的兩點(diǎn)A,B.問是否存在以A,B為直徑

 的圓 過橢圓的右焦點(diǎn).若存在,求出的值;不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南安陽一中高二第二次階段考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)如圖,已知橢圓(a>b>0)的離心率,過點(diǎn) 和的直線與原點(diǎn)的距離為

(1)求橢圓的方程;

(2)已知定點(diǎn),若直線與橢圓交于、兩    點(diǎn).問:是否存在的值,

使以為直徑的圓過點(diǎn)?請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓上的任意一點(diǎn)到它兩個(gè)焦點(diǎn)的距離之和為,且它的焦距為2.

(Ⅰ)求橢圓的方程;

(Ⅱ)已知直線與橢圓交于不同兩點(diǎn),且線段的中點(diǎn)不在圓內(nèi),求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案