(05年浙江卷理)(14分)
如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)求證:OD∥平面PAB;
(Ⅱ)當(dāng)k=時(shí),求直線PA與平面PBC所成角的大;
(Ⅲ) 當(dāng)k取何值時(shí),O在平面PBC內(nèi)的射影恰好為△PBC的重心?
解析:解法一
(Ⅰ)∵O、D分別為AC、PC的中點(diǎn):∴OD∥PA,又AC平面PAB,∴OD∥平面PAB.
(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC.
取BC中點(diǎn)E,連結(jié)PE,則BC⊥平面POE,作OF⊥PE于F,連結(jié)DF,則OF⊥平面PBC
∴∠ODF是OD與平面PBC所成的角.
又OD∥PA,∴PA與平面PBC所成角的大小等于∠ODF.
在Rt△ODF中,sin∠ODF=,∴PA與平面PBC所成角為arcsin
(Ⅲ)由(Ⅱ)知,OF⊥平面PBC,∴F是O在平面PBC內(nèi)的射影.
∵D是PC的中點(diǎn),若F是△PBC的重心,則B、F、D三點(diǎn)共線,直線OB在平面PBC內(nèi)的射影為直線BD,∵OB⊥PC.∴PC⊥BD,∴PB=BC,即k=1..反之,,當(dāng)k=1時(shí),三棱錐O-PBC為正三棱錐,∴O在平面PBC內(nèi)的射影為△PBC的重心.
解法二:
∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.
以O(shè)為原點(diǎn),射線OP為非負(fù)x軸,建立空間坐標(biāo)系O-xyz如圖),設(shè)AB=a,則A(a,0,0).
B(0, a,0),C(-a,0,0).設(shè)OP=h,則P(0,0,h).
(Ⅰ)∵D為PC的中點(diǎn),∴又∥,
∴OD∥平面PAB.
(Ⅱ)∵k=則PA=2a,∴h=∴可求得平面PBC的法向量
∴cos.
設(shè)PA與平面PBC所成角為θ,剛sinθ=|cos()|=.
∴PA與平面PBC所成的角為arcsin.
(Ⅲ)△PBC的重心G(),∴=().
∵OG⊥平面PBC,∴又∴,
∴h=,∴PA=,即k=1,反之,當(dāng)k=1時(shí),三棱錐O-PBC為正三棱錐.
∴O為平面PBC內(nèi)的射影為△PBC的重心.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說(shuō)是“萬(wàn)里挑一”,要想通過(guò)需過(guò)“五關(guān)”――目測(cè)、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個(gè)同學(xué)都順利通過(guò)了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過(guò)復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過(guò)文考關(guān)的概率分別是0.6,0.5,0.4,通過(guò)政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.
(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過(guò)復(fù)檢的概率;
(2)設(shè)通過(guò)最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年江蘇百校樣本分析)(10分)(矩陣與變換) 給定矩陣 A=, =.
(1)求A的特征值、及對(duì)應(yīng)的特征向量;
(2)求.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年莆田四中一模理) (14分)
由函數(shù)確定數(shù)列,,若函數(shù)的反函數(shù) 能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。
(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項(xiàng)公式;
(2)對(duì)(1)中,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的范圍;
(3)設(shè),若數(shù)列的反數(shù)列為,與的公共項(xiàng)組成的數(shù)列為;求數(shù)列前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年遼寧卷)(12分)
已知函數(shù).設(shè)數(shù)列滿足,,數(shù)列滿足
,…,
(Ⅰ)用數(shù)學(xué)歸納法證明;(Ⅱ)證明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(05年湖北卷文)(12分)
設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com