(本小題滿分14分) 已知函數(shù)

(1)若函數(shù)的圖象在公共點P處有相同的切線,求實數(shù)的值并求點P的坐標(biāo);(2)若函數(shù)的圖象有兩個不同的交點M、N,求的取值范圍;(3)在(Ⅱ)的條件下,過線段MN的中點作軸的垂線分別與的圖像和的圖像交S、T點,以S為切點作的切線,以T為切點作的切線.是否存在實數(shù)使得,如果存在,求出的值;如果不存在,請說明理由.

(Ⅰ)    (Ⅱ)   (Ⅲ)不存在實數(shù)


解析:

(Ⅰ)設(shè)函數(shù)的圖象的公共點,則有  ①

又在點P有共同的切線∴代入①得設(shè)所以函數(shù)最多只有1個零點,觀察得是零點,∴,此時…5分

(Ⅱ)方法1 由

當(dāng)時,,則單調(diào)遞增

當(dāng)時,,則單調(diào)遞減,且

所以處取到最大值,

所以要使有兩個不同的交點,則有   10分

方法2 根據(jù)(Ⅰ)知當(dāng)時,兩曲線切于點,此時變化的的對稱軸是,而是固定不動的,如果繼續(xù)讓對稱軸向右移動即,兩曲線有兩個不同的交點,當(dāng)時,開口向下,只有一個交點,顯然不合,所以.

(Ⅲ)不妨設(shè),且,則中點的坐標(biāo)為

      以S為切點的切線的斜率

     以T為切點的切線的斜率

如果存在使得,即          ①

      而且有

     如果將①的兩邊同乘

   即  設(shè),則有

   令 

,∴因此上單調(diào)遞增,故

所以不存在實數(shù)使得.…………… 14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案