【題目】已知拋物線的焦點(diǎn)為F,過F作平行于x軸的直線交拋物線于A,B兩點(diǎn)(AB的左側(cè)),若△AOB的面積為2.

(1)求拋物線C的方程;

(2)設(shè)P是拋物線C的準(zhǔn)線上一點(diǎn),Q是拋物線上的一點(diǎn),若PF⊥QF,求證:直線PQ與拋物線相切.

【答案】(1) ; (2)見解析.

【解析】

(1)由題意可得,則|,可得,從而可得結(jié)果;(2)設(shè),顯然時不滿足題意. 當(dāng)時,.又直線的方程為,將代入整理得,則,而,則,所以,從而可得結(jié)論.

(1)由題意可得,則|AB|=2p,△AOB的面積,所以p=2,則拋物線C的方程為.

(2)證明:顯然FQ的斜率存在,設(shè)為k,當(dāng)k=0時,P(0,-1,Q(2,1)(-2,1),直線y=-x-1,與拋物線聯(lián)立,得判別式△=0,所以此時直線與拋物線C相切;當(dāng)k≠0時,設(shè)直線

因?yàn)?/span>PF⊥QF,則直線PF的方程為,

P(2k,- 1),消去y,

Q是直線FQ與拋物線C的交點(diǎn),

設(shè),顯然時不滿足題意.

當(dāng)時,.

又直線PQ的方程為,將,即代入整理得,

,而,則,

所以,故直線PQ與拋物線C相切

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級3個班有10名學(xué)生在全國英語能力大賽中獲獎,學(xué)生來源人數(shù)如表:

班別

高一(1)班

高一(2)班

高一(3)班

人數(shù)

3

6

1

若要求從10位同學(xué)中選出兩位同學(xué)介紹學(xué)習(xí)經(jīng)驗(yàn),設(shè)其中來自高一(1)班的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品.統(tǒng)計結(jié)果如下:

甲流水線樣本的頻數(shù)分布表

產(chǎn)品重量(克)

頻數(shù)

[490,495)

6

[495,500)

8

[500,505)

14

[505,510)

8

[510,515]

4

乙流水線樣本的頻率分布直方圖

(1)求甲流水線樣本合格的頻率;

(2)由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動包裝流水線的選擇有關(guān).

分類

甲流水線

乙流水線

總計

合格品

不合格品

總計

附:K2.

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,btanB+btanA=﹣2ctanB,且a=8,△ABC的面積為 ,則b+c的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過600 元(含600元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,一次性摸出3個球,其中獎規(guī)則為:若摸到3個紅球,享受免單優(yōu)惠;若摸到2個紅球,則打6折;若摸到1個紅球,則打7折;若沒摸到紅球,則不打折.
方案二:從裝有10個形狀、大小完全相同的小球(其中紅球3個,黑球7個)的抽獎盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個顧客均分別消費(fèi)了 600元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左焦點(diǎn)為F,直線y=kx(k>0)與橢圓C交于A,B兩點(diǎn),若 ,則C的離心率取值范圍為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體ABCDE中,△BCD是邊長為2的正三角形,AE∥DB,AE⊥DE,2AE=BD,DE=1,面ABDE⊥面BCD,F(xiàn)是CE的中點(diǎn).
(Ⅰ)求證:BF⊥CD;
(Ⅱ)求二面角C﹣BF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,定義域?yàn)閇0,2π],g(x) 為f(x) 的導(dǎo)函數(shù).
(1)求方程g(x)=0 的解集;
(2)求函數(shù)g(x) 的最大值與最小值;
(3)若函數(shù)F(x)=f(x)﹣ax 在定義域上恰有2個極值點(diǎn),求實(shí)數(shù)a 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:m∈R,且m+1≤0,q:x∈R,x2+mx+1>0恒成立,若p∧q為假命題且p∨q為真命題,則m的取值范圍是__________________

查看答案和解析>>

同步練習(xí)冊答案