【題目】設(shè)函數(shù).
(1)若函數(shù)是奇函數(shù),求實(shí)數(shù)的值;
(2)若對(duì)任意的實(shí)數(shù),函數(shù)(為實(shí)常數(shù))的圖象與函數(shù)的圖象總相切于一個(gè)定點(diǎn).
① 求與的值;
② 對(duì)上的任意實(shí)數(shù),都有,求實(shí)數(shù)的取值范圍.
【答案】(1)0;(2)①;②.
【解析】試題分析:
(1)由奇函數(shù)的 定義得到關(guān)于實(shí)數(shù)a的方程,解方程可得a=0;
(2)由導(dǎo)函數(shù)研究函數(shù)的 切線可得切點(diǎn)為,切線的方程為,則.
(3)由題意分類討論 和兩種情況可得實(shí)數(shù)的取值范圍是.
試題解析:
解:(1)因?yàn)楹瘮?shù)是奇函數(shù),所以恒成立,
即,得恒成立,
.
(2)①,設(shè)切點(diǎn)為,
則切線的斜率為,
據(jù)題意是與無(wú)關(guān)的常數(shù),故,切點(diǎn)為, 由點(diǎn)斜式得切線的方程為,即,故.
② 當(dāng)時(shí),對(duì)任意的,都有;
當(dāng)時(shí),對(duì)任意的,都有;
故對(duì)恒成立,或對(duì)恒成立.
而,設(shè)函數(shù).
則對(duì)恒成立,或對(duì)恒成立, ,
當(dāng)時(shí), ,,恒成立,所以在上遞增, ,
故在上恒成立,符合題意. 當(dāng)時(shí),令,得,令,得,
故在上遞減,所以,
而設(shè)函數(shù),
則, 恒成立,
在上遞增, 恒成立,
在上遞增, 恒成立,
即,而,不合題意.
綜上,知實(shí)數(shù)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斐波那契數(shù)列滿足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯(cuò)誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,AB=10cm,BC=8cm.將其按圖(1)的方法分割,并按圖(2)的方法焊接成扇形;按圖(3)的方法將寬BC 等分,把圖(3)中的每個(gè)小矩形按圖(1)分割并把4個(gè)小扇形焊接成一個(gè)大扇形;按圖(4)的方法將寬BC 等分,把圖(4)中的每個(gè)小矩形按圖(1)分割并把6個(gè)小扇形焊接成一個(gè)大扇形;……;依次將寬BC 等分,每個(gè)小矩形按圖(1)分割并把個(gè)小扇形焊接成一個(gè)大扇形.當(dāng)n時(shí),最后拼成的大扇形的圓心角的大小為 ( )
A. 小于 B. 等于 C. 大于 D. 大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,平面底面,,,平分,為的中點(diǎn),,,,,分別為上一點(diǎn),且.
(1)若,證明:平面.
(2)過(guò)點(diǎn)作平面的垂線,垂足為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記函數(shù)f(x)=log2(2x﹣3)的定義域?yàn)榧螹,函數(shù)g(x)=的定義域?yàn)榧螻.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)
且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為、,過(guò)點(diǎn)
且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)在軸上的射影恰好為點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一長(zhǎng)為24米的籬笆,一面利用墻(墻最大長(zhǎng)度是10米)圍成一個(gè)矩形花圃,設(shè)該花圃寬AB為x米,面積是y平方米,
(1)求出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(2)當(dāng)花圃一邊AB為多少米時(shí),花圃面積最大?并求出這個(gè)最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸與極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,過(guò)點(diǎn)且傾斜角為的直線與曲線相交于兩點(diǎn).
(1)寫(xiě)出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com