(本小題滿分13分)已知數(shù)列的前項和是,且 .
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)記,求數(shù)列的前項和 .
(Ⅰ); (Ⅱ)。
解析試題分析:(I)先令n=1,得,從而得到.
然后再令時,由得:,兩式相減得:
即,從而確定為等比數(shù)列,問題得解.
(II)在(I)的基礎(chǔ)上,可求出,顯然應(yīng)采用錯位相減的方法求和即可.
(Ⅰ)當(dāng)時, ,,∴; ………… 2分
當(dāng)時,由得:
兩式相減得:
即,又 , ……………… 5分
∴數(shù)列是以為首項,為公比的等比數(shù)列. ………………… 6分
………………… 7分
(Ⅱ)由(Ⅰ)知 , ………………… 8分
∴ …………………①
…………②
由①-②得:
…………………9分
………………… 12分
………………… 13分
考點: 由an與Sn的關(guān)系求出an,等比數(shù)列的定義,通項公式,錯位相減法求和.
點評:(I)再由Sn求an時,應(yīng)先確定a1,然后再根據(jù),求時,an.
(II)當(dāng)一個數(shù)列的通項是一個等差數(shù)列與一個等比數(shù)列積時,可以采用錯位相減法求和.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列的前n項和滿足(>0,且)。數(shù)列滿足
(I)求數(shù)列的通項。
(II)若對一切都有,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知數(shù)列{}滿足,
(I)寫出,并推測的表達(dá)式;
(II)用數(shù)學(xué)歸納法證明所得的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知曲線:,數(shù)列的首項,且當(dāng)時,點恒在曲線上,數(shù)列滿足。
(1)試判斷數(shù)列是否是等差數(shù)列?并說明理由;
(2)求數(shù)列和的通項公式;
(3)設(shè)數(shù)列滿足,試比較數(shù)列的前項和與2的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項和為,滿足.
(1)求;
(2)令,求數(shù)列的前項和.
(3)設(shè),若對任意的正整數(shù),均有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)(注意:在試題卷上作答無效)
已知曲線,從上的點作軸的垂線,交于點,再從點作軸的垂線,交于點,設(shè)
(1)求數(shù)列的通項公式;
(2)記,數(shù)列的前項和為,試比較與的大小;
(3)記,數(shù)列的前項和為,試證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形.
(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出與之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式;
(3)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com