試題分析:因為
,所以
。因為
在
上單調(diào)遞增,所以
,即
。綜上可得
。故C正確。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)
,
,其中
且
.
(I) 若
,求
的值; (II) 若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在邊長為10的正方形
內(nèi)有一動點
,
,作
于
,
于
,求矩形
面積的最小值和最大值,并指出取最大值時
的具體位置.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
定義在
上的函數(shù)
,如果對任意
,恒有
(
,
)成立,則稱
為
階縮放函數(shù).
(1)已知函數(shù)
為二階縮放函數(shù),且當
時,
,求
的值;
(2)已知函數(shù)
為二階縮放函數(shù),且當
時,
,求證:函數(shù)
在
上無零點;
(3)已知函數(shù)
為
階縮放函數(shù),且當
時,
的取值范圍是
,求
在
(
)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)f(x)的定義域為R,
f(-1)=2,對任意
x∈R,
f′(
x)>2,則
f(
x)>2
x+4的解集為( ).
A.(-1,1) | B.(-1,+∞) |
C.(-∞,-1) | D.(-∞,+∞) |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知偶函數(shù)
在區(qū)間
單調(diào)遞減,則滿足
的
取值范圍是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
是定義在
上的偶函數(shù),且在
上單調(diào)遞增,則滿足
的實數(shù)
的范圍是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)函數(shù)f(x)=
的最大值為
,最小值為
,
那么
.
查看答案和解析>>