【題目】已知橢圓C:()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
【答案】(1);(2)證明見(jiàn)解析,
【解析】
(1)由題意,又,由此可求出的值,從而求得橢圓的方程.(2)橢圓方程化為.設(shè)PQ的方程為,代入橢圓方程得:.(ⅰ)設(shè)PQ的中點(diǎn)為,求出,只要,即證得OT平分線段PQ.(ⅱ)可用表示出PQ,TF可得:化簡(jiǎn)得:.再根據(jù)取等號(hào)的條件,可得T的坐標(biāo).
(1),又.
(2)橢圓方程化為.
(ⅰ)設(shè)PQ的方程為,代入橢圓方程得:.
設(shè)PQ的中點(diǎn)為,則
又TF的方程為,則得,
所以,即OT過(guò)PQ的中點(diǎn),即OT平分線段PQ.
(ⅱ),又,所以
.
當(dāng)時(shí)取等號(hào),此時(shí)T的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
(3)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)3:2,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,底面為菱形,且,E為的中點(diǎn).
(1)求證:平面平面;
(2)棱上是否存在點(diǎn)F,使得平面?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在多面體中,四邊形是正方形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于曲線,有如下結(jié)論:
①曲線C關(guān)于原點(diǎn)對(duì)稱;
②曲線C關(guān)于直線x±y=0對(duì)稱;
③曲線C是封閉圖形,且封閉圖形的面積大于2π;
④曲線C不是封閉圖形,且它與圓x2+y2=2無(wú)公共點(diǎn);
⑤曲線C與曲線有4個(gè)交點(diǎn),這4點(diǎn)構(gòu)成正方形.其中所有正確結(jié)論的序號(hào)為__.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在四棱錐中,底面為矩形,,,平面平面,為等腰直角三角形,且,為底面的中心.
(1)求異面直線與所成角的余弦值;
(2)若為中點(diǎn),在棱上,若,,且二面角的正弦值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點(diǎn)E、F分別是AB和PC的中點(diǎn).
(1)求證:AB⊥平面PAD;
(2)求證:EF//平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率為,橢圓上一點(diǎn)到左右兩個(gè)焦點(diǎn)的距離之和是4.
(1)求橢圓的方程;
(2)已知過(guò)的直線與橢圓交于兩點(diǎn),且兩點(diǎn)與左右頂點(diǎn)不重合,若,求四邊形面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】河道上有一拋物線型拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面8m,拱圈內(nèi)水面寬24m,一條船在水面以上部分高6.5m,船頂部寬6m.
(1)試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拱橋所在的拋物線的標(biāo)準(zhǔn)方程;
(2)近日水位暴漲了1.54m,為此,必須加重船載,降低船身,才能通過(guò)橋洞,試問(wèn):船身至少應(yīng)該降低多少?(精確到0.1m)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com