【題目】隨著生活水平的提高,人們對(duì)空氣質(zhì)量的要求越來(lái)越高,某機(jī)構(gòu)為了解公眾對(duì)“車(chē)輛限行”的態(tài)度,隨機(jī)抽查50人,并將調(diào)查情況進(jìn)行整理后制成如表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,60) |
頻數(shù) | 10 | 10 | 10 | 10 | 10 |
贊成人數(shù) | 3 | 5 | 6 | 7 | 9 |
(1)世界聯(lián)合國(guó)衛(wèi)生組織規(guī)定:[15,45)歲為青年,(45,60)為中年,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)以下2×2列聯(lián)表:
青年人 | 中年人 | 合計(jì) | |
不贊成 |
|
|
|
贊成 |
|
|
|
合計(jì) |
|
|
|
(2)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為贊成“車(chē)柄限行”與年齡有關(guān)? 附: ,其中n=a+b+c+d
獨(dú)立檢驗(yàn)臨界值表:
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
(3)若從年齡[15,25),[25,35)的被調(diào)查中各隨機(jī)選取1人進(jìn)行調(diào)查,設(shè)選中的兩人中持不贊成“車(chē)輛限行”態(tài)度的人員為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.
【答案】
(1)解:根據(jù)題目中的數(shù)據(jù),填寫(xiě)列聯(lián)表如下;
青年人 | 中年人 | 合計(jì) | |
不贊成 | 16 | 4 | 20 |
贊成 | 14 | 16 | 30 |
合計(jì) | 30 | 20 | 50 |
(2)解:由(1)表中數(shù)據(jù)計(jì)算得
,
對(duì)照臨界值得P(K2≥3.841)≈0.05,
因此,在犯錯(cuò)誤的概率不超過(guò)0.05的前提下,認(rèn)為贊成“車(chē)輛限行”與年齡有關(guān)
(3)解:根據(jù)題意,ξ的可能取值為0,1,2;
計(jì)算 ,
,
所以隨機(jī)變量ξ的分布列為:
ξ | 0 | 1 | 2 |
P |
所以數(shù)學(xué)期望為
【解析】(1)根據(jù)題目中的數(shù)據(jù),填寫(xiě)列聯(lián)表即可;(2)由(1)表中數(shù)據(jù)計(jì)算觀測(cè)值,對(duì)照臨界值得出結(jié)論;(3)根據(jù)題意知ξ的可能取值,求出對(duì)應(yīng)的概率值,寫(xiě)出隨機(jī)變量ξ的分布列,計(jì)算數(shù)學(xué)期望值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】執(zhí)行一次如圖所示的程序框圖,若輸出i的值為0,則下列關(guān)于框圖中函數(shù)f(x)(x∈R)的表述,正確的是( )
A.f(x)是奇函數(shù),且為減函數(shù)
B.f(x)是偶函數(shù),且為增函數(shù)
C.f(x)不是奇函數(shù),也不為減函數(shù)
D.f(x)不是偶函數(shù),也不為增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若1
A. logab>logba B. |logab+logba|>2
C. (logba)2<1 D. |logab|+|logba|>|logab+logba|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長(zhǎng)分別為方程 的兩個(gè)實(shí)數(shù)根,若斜邊BC上有異于端點(diǎn)的E,F(xiàn)兩點(diǎn),且EF=1,∠EAF=θ,則tanθ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某店銷(xiāo)售進(jìn)價(jià)為2元/件的產(chǎn)品,該店產(chǎn)品每日的銷(xiāo)售量(單位:千件)與銷(xiāo)售價(jià)格(單位:元/件)滿足關(guān)系式,其中.
(1)若產(chǎn)品銷(xiāo)售價(jià)格為4元/件,求該店每日銷(xiāo)售產(chǎn)品所獲得的利潤(rùn);
(2)試確定產(chǎn)品的銷(xiāo)售價(jià)格,使該店每日銷(xiāo)售產(chǎn)品所獲得的利潤(rùn)最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)m=1時(shí),求證:對(duì)x∈[0,+∞)時(shí),f(x)≥0;
(2)當(dāng)m≤1時(shí),討論函數(shù)f(x)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,且過(guò)點(diǎn)M(4,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m(m≠﹣3)與橢圓C交于P,Q兩點(diǎn),記直線MP,MQ的斜率分別為k1 , k2 , 試探究k1+k2是否為定值.若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com