記數(shù)列{}的前n項和為為,且++n=0(n∈N*)恒成立.
(1)求證:數(shù)列是等比數(shù)列;
(2)已知2是函數(shù)f(x)=+ax-1的零點,若關(guān)于x的不等式f(x)≥對任意n∈N﹡在x∈(-∞,λ]上恒成立,求實常數(shù)λ的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱.
(1)求證:f(x)是周期為4的周期函數(shù);
(2)若(0<x≤1),求x∈[-5,-4]時,函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知定義在上的函數(shù),如果滿足:對任意,存在常數(shù),使得成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
下面我們來考慮兩個函數(shù):,.
(Ⅰ)當時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(Ⅱ)若,函數(shù)在上的上界是,求的取值范圍;
(Ⅲ)若函數(shù)在上是以為上界的有界函數(shù), 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
停車場預計“十·一”國慶節(jié)這天將停放大小汽車1200輛次,該停車場的收費標準為:大車每輛次10元,小車每輛次5元.根據(jù)預計,解答下面的問題:
(1)寫出國慶節(jié)這天停車場的收費金額y(元)與小車停放輛次x(輛)之間的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(2)如果國慶節(jié)這天停放的小車輛次占停車總輛次的65%~85%,請你估計國慶節(jié)這天該停車場收費金額的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票。股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系,則股價(元)和時間的關(guān)系在段可近似地用解析式來描述,從點走到今天的點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且點和點正好關(guān)于直線:對稱。老張預計這只股票未來的走勢如圖中虛線所示,這里段與段關(guān)于直線對稱,段是股價延續(xù)段的趨勢(規(guī)律)走到這波上升行
情的最高點,F(xiàn)在老張決定取點,點,點來確定解析式中的常數(shù),,,,并且求得。
(Ⅰ)請你幫老張算出,,,并回答股價什么時候見頂(即求點的橫坐標)
(Ⅱ)老張如能在今天以點處的價格買入該股票3000股,到見頂處點的價格全部賣出,不計其它費用,這次操作他能賺多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式其中,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元),
(1)求y關(guān)于x的解析式,
(2)怎樣投資才能使總利潤最大,最大值為多少?.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com