3.設(shè)x>0,y>0,且x+2y=1,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為9.

分析 利用“乘1法”得到$\frac{1}{x}$+$\frac{2}{y}$=($\frac{1}{x}$+$\frac{2}{y}$)(x+2y),展開多項式乘多項式,然后利用基本不等式求最值.

解答 解:∵x>0,y>0,且x+2y=1,
∴$\frac{1}{x}$+$\frac{2}{y}$=($\frac{1}{x}$+$\frac{2}{y}$)(x+2y)=5+2($\frac{y}{x}$+$\frac{x}{y}$)≥5+2×2$\sqrt{\frac{y}{x}•\frac{x}{y}}$=9(當(dāng)且僅當(dāng)x=y時取“=”),
∴$\frac{1}{x}$+$\frac{2}{y}$的最小值為9.
故答案是:9.

點評 本題考查利用基本不等式求最值,關(guān)鍵是“1”的靈活運用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知任意角α的終邊經(jīng)過點P(-3,m),且cosα=-$\frac{3}{5}$,則sinα=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.±$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)i是虛數(shù)單位,若復(fù)數(shù)z=i,則z的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求與橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$共焦點,且過點(-2,$\sqrt{10}$)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點A(1,1)和點B(-1,-3)在曲線C:y=ax3+bx2+d(a,b,d為常數(shù)),若曲線在點A和點B處的切線互相平行,則a+b+d=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2-2lnx.
(Ⅰ)若f(x)在x=e處取得極值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的單調(diào)區(qū)間;
(Ⅲ) 設(shè)a>$\frac{1}{{e}^{2}}$,g(x)=-5+ln$\frac{x}{a}$,?x1,x2∈(0,e],使得|f(x1)-g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(2-a)^{2}(x<0)}\end{array}\right.$,其中a∈R,若對任意的非零實數(shù)x1,存在唯一的非零實數(shù)x2(x1≠x2),使得f(x2)=f(x1)成立,則k的取值范圍為( 。
A.[-20,-4]B.[-30,-9]C.[-4,0]D.[-9,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以X(單位:t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.
(I)將T表示為X的函數(shù);
(II)根據(jù)直方圖求利潤T不少于57 000元的頻率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值 (例如:若需求量X∈[100,110),則取X=105),估計T的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.市場上有一種新型的強(qiáng)力洗衣粉,特點是去污速度快,已知每投放a(1≤a≤4且a∈R)個單位的洗衣粉液在一定量水的洗衣機(jī)中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關(guān)系式近似為y=af(x),其中f(x)=$\left\{\begin{array}{l}\frac{16}{8-x}-1,0≤x≤4\\ 5-\frac{1}{2}x,4<x≤10\end{array}$,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.
(1)若只投放一次4個單位的洗衣液,則有效去污時間可能達(dá)幾分鐘?
(2)若先投放2個單位的洗衣液,6分鐘后投放a個單位的洗衣液,要使接下來的4分鐘中能夠持續(xù)有效去污,試求a的最小值(精確到0.1,參考數(shù)據(jù):$\sqrt{2}$取1.4)

查看答案和解析>>

同步練習(xí)冊答案