【題目】已知函數(shù).

1)求的極值;

2)若,且當(dāng)為自然對(duì)數(shù)的底數(shù))時(shí),恒成立,求實(shí)數(shù)的取值范圍.

【答案】1)見解析;(2.

【解析】

根據(jù)題意,求函數(shù)的定義域和導(dǎo)數(shù),在定義域范圍內(nèi)判斷函數(shù)的單調(diào)性求出極值即可;

根據(jù)題意,求出函數(shù)的表達(dá)式,利用導(dǎo)數(shù)判斷函數(shù)上的單調(diào)性,求出函數(shù)的最大值,由題意知,,解不等式即可.

由題意知,定義域?yàn)?/span>

因?yàn)楹瘮?shù)

所以

,

所以當(dāng)時(shí),1,

因?yàn)楫?dāng)時(shí),,

當(dāng)時(shí),,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

∴當(dāng)時(shí),有極大值為

當(dāng)時(shí),有極小值為.

因?yàn)楹瘮?shù),

所以,

當(dāng)時(shí),恒成立等價(jià)于

當(dāng)時(shí),,

因?yàn)?/span>,

,又,

所以當(dāng)時(shí),,

當(dāng)時(shí),,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

因?yàn)?/span>,

,所以,

所以,即

故實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,若上為增函數(shù),則稱一階比增函數(shù);若上為增函數(shù),則稱二階比增函數(shù)”.我們把所有一階比增函數(shù)組成的集合記為,所有二階比增函數(shù)組成的集合記為.

(Ⅰ)已知函數(shù),若,求實(shí)數(shù)的取值范圍;

(Ⅱ)已知,的部分函數(shù)值由下表給出,











求證:

(Ⅲ)定義集合

請(qǐng)問:是否存在常數(shù),使得,,有成立?若存在,求出的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點(diǎn),與曲線交于兩點(diǎn),求取最大值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,且.

1)求的解析式;

2)設(shè)函數(shù),當(dāng)時(shí),求的最小值;

3)設(shè)函數(shù),若對(duì)任意,總存在,使得成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行六面體中,,.

1)證明:.

2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點(diǎn),過的動(dòng)直線交拋物線,兩點(diǎn).當(dāng)直線與軸垂直時(shí),

1)求拋物線的方程;

2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型商場(chǎng)的空調(diào)在1月到5月的銷售量與月份相關(guān),得到的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

1

2

3

4

5

銷量(百臺(tái))

0.6

0.8

1.2

1.6

1.8

(1)經(jīng)分析發(fā)現(xiàn)1月到5月的銷售量可用線性回歸模型擬合該商場(chǎng)空調(diào)的月銷量(百件)與月份之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)6月份該商場(chǎng)空調(diào)的銷售量;

(2)若該商場(chǎng)的營(yíng)銷部對(duì)空調(diào)進(jìn)行新一輪促銷,對(duì)7月到12月有購(gòu)買空調(diào)意愿的顧客進(jìn)行問卷調(diào)查.假設(shè)該地?cái)M購(gòu)買空調(diào)的消費(fèi)群體十分龐大,經(jīng)過營(yíng)銷部調(diào)研機(jī)構(gòu)對(duì)其中的500名顧客進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:

有購(gòu)買意愿對(duì)應(yīng)的月份

7

8

9

10

11

12

頻數(shù)

60

80

120

130

80

30

現(xiàn)采用分層抽樣的方法從購(gòu)買意愿的月份在7月與12月的這90名顧客中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3人進(jìn)行跟蹤調(diào)查,求抽出的3人中恰好有2人是購(gòu)買意愿的月份是12月的概率.

參考公式與數(shù)據(jù):線性回歸方程,其中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像則下面對(duì)函數(shù)的敘述不正確的是(

A.函數(shù)的周期

B.函數(shù)的一個(gè)對(duì)稱中心

C.函數(shù)在區(qū)間內(nèi)單調(diào)遞增

D.當(dāng),時(shí),函數(shù)有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面,

的中點(diǎn),.

(1)求證:平面;

(2)求證:平面平面

(3)求此多面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案