18.設(shè)a、b為正數(shù),$\frac{1}{a}$+$\frac{1}$≤2$\sqrt{2}$,(a-b)2=4(ab)3,則a+b=(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4$\sqrt{2}$

分析 令s=a+b,t=ab,得到$\frac{\sqrt{2}}{4}$s≤t,由(a-b)2=4(ab)3,可以得到s2-4t=4t3,即可得到s2-4$\sqrt{2}$s+8≤0,解得即可.

解答 解:令s=a+b,t=ab
則由 $\frac{1}{a}$+$\frac{1}$≤2$\sqrt{2}$,得$\frac{\sqrt{2}}{4}$s≤t,
由(a-b)2=4(ab)3,得(a+b)2-4ab=4(ab)3
∴s2-4t=4t3,
即s2=4t+4t3≥$\sqrt{2}$s+$\frac{\sqrt{2}}{8}$s3
即s2-4$\sqrt{2}$s+8=(s-2$\sqrt{2}$)2≤0,
解之得s=2$\sqrt{2}$.
則a+b的值等于2$\sqrt{2}$.
故選:C.

點評 本題考查了不等式的應(yīng)用,關(guān)鍵是換元,以及轉(zhuǎn)化,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖:四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=$\frac{π}{3}$,M是BC上的點,且BM=$\frac{1}{2}$,
(1)證明:BC⊥平面POM;
(2)若邊PC與底面ABCD所成角的正切值為1,求平面PAD與平面PBC所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐S-ABCD中,底面ABCD為矩形,SD⊥底面ABCD,AD=$\sqrt{2}$,DC=SD=2,點M是側(cè)棱SC的中點.
(Ⅰ)求異面直線BM與CD所成角的大小;
(Ⅱ)求二面角S-AM-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$f(x)=sin[\frac{π}{3}(x+1)]-\sqrt{3}cos[\frac{π}{3}(x+1)]$,則f(1)+f(2)+f(3)+…+f(2013)=( 。
A.-$\sqrt{3}$B.$\sqrt{3}$C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若存在正數(shù)a和實數(shù)x0,使得f(x0+a)=f(x0)+a成立,則稱區(qū)間[x0,x0+a]為函數(shù)f(x)的“公平增長區(qū)間”.則下列四個函數(shù):
①f(x)=2x-1
②f(x)=||x|-1|,
③$f(x)=\sqrt{{x^2}-1}$,
④f(x)=$\sqrt{{x}^{2}-1}$-x,x∈[1,+∞)
其中有“公平增長區(qū)間”的為②④(填出所有正確結(jié)論的番號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,己知平行四邊形ABCD中,∠BAD=60°,AB=6,AD=3,G為CD中點,現(xiàn)將梯形ABCG沿著AG折起到AFEG.
(I)求證:直線CE∥平面ABF;
(II)如果FG⊥平面ABCD求二面B一EF一A的平面角的余弦值.
(Ⅲ)若直線AF與平面 ABCD所成角為$\frac{π}{6}$,求證:FG⊥平面ABCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.過三點A(1,3),B(4,2),C(1,-7)的圓M交于y軸于P、Q兩點.
(1)求線段PQ的長;
(2)動圓N的圓心N在直線2x-y+6=0上運動,半徑為10,若圓N與圓M有公共點,求點N橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為120°,若向量$\overrightarrow{c}=\overrightarrow{a}+\overrightarrow$,且$\overrightarrow{a}⊥\overrightarrow{c}$,則$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的值為( 。
A.$\frac{1}{2}$B.$\frac{2\sqrt{3}}{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)f(x)=ax2-bx+6lnx+15,其中a∈R,曲線y=f(x)在x=1和x=6處的切線都與直線$y=-\frac{1}{2}x+3$垂直.
(1)確定a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊答案