【題目】已知F為拋物線焦點,A為拋物線C上的一動點,拋物線C在A處的切線交y軸于點B,以FA、FB為鄰邊作平行四邊形FAMB.
(1)證明:點M在一條定直線上;
(2)記點M所在定直線為l,與y軸交于點N,MF與拋物線C交于P,Q兩點,求的面積的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1) 設(shè),求導(dǎo)可得切線斜率,即可求出切線方程,得出點坐標(biāo),求出的中點為,由又為的中點可得,即證得結(jié)論;
(2) 由(1)可求得直線MF的方程: ,及與拋物線方程聯(lián)立,借助韋達定理,弦長公式及點到直線的距離公式即可求得面積.
(1)證明:設(shè),則在處的切線斜率為.
所以切線方程為:,令得即.
記的中點為,則.又,因為四邊形為平行四邊形,即又為的中點,所以,即點在定值線
(2) 由(1)可知直線的方程: ,設(shè)聯(lián)立,化簡得,
,則,點到直線的距離為,所以面積為,即面積取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線的焦點為,(其中)是上的一點,且.
(1)求拋物線的方程;
(2)已知為拋物線上除頂點之外的任意一點,在點處的切線與軸交于點,過點的直線交拋物線于,兩點,設(shè),,的斜率分別為,,,求證:,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從中國教育在線官方公布的考研動機調(diào)查來看,本科生扎堆考研的原因大概集中在這6個方面:本科就業(yè)壓力大,提升競爭力;通過考研選擇真正感興趣的專業(yè);為了獲得學(xué)歷;繼續(xù)深造;隨大流;有名校情結(jié).如圖是2015~2019年全國碩士研究生報考人數(shù)趨勢圖(單位:萬人)的折線圖.
(1)求關(guān)于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,預(yù)測2021年全國碩士研究生報考人數(shù).
參考數(shù)據(jù):.
回歸方程中斜率和截距的最小二乘估計公式分別:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,若曲線與曲線關(guān)于直線對稱.
(1)求曲線的直角坐標(biāo)方程;
(2)在以為極點,軸的正半軸為極軸的極坐標(biāo)系中,射線與的異于極點的交點為,與的異于極點的交點為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有種特產(chǎn)水果很受當(dāng)?shù)乩习傩諝g迎,但該種水果只能在9月份銷售,且該種水果只能當(dāng)天食用口感最好,隔天食用口感較差。某超市每年9月份都銷售該特產(chǎn)水果,每天計劃進貨量相同,進貨成本每公斤8元,銷售價每公斤12元;當(dāng)天未賣出的水果則轉(zhuǎn)賣給水果罐頭廠,但每公斤只能賣到5元。根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)?shù)貧鉁胤秶幸欢P(guān)系。如果氣溫不低于30度,需求量為5000公斤;如果氣溫位于,需求量為3500公斤;如果氣溫低于25度,需求量為2000公斤;為了制定今年9月份訂購計劃,統(tǒng)計了前三年9月份的氣溫范圍數(shù)據(jù),得下面的頻數(shù)分布表
氣溫范圍 | |||||
天數(shù) | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.
(1)求今年9月份這種水果一天需求量(單位:公斤)的分布列和數(shù)學(xué)期望;
(2)設(shè)9月份一天銷售特產(chǎn)水果的利潤為(單位:元),當(dāng)9月份這種水果一天的進貨量為(單位:公斤)為多少時,的數(shù)學(xué)期望達到最大值,最大值為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,點是橢圓上一點,是和的等差中項.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若為橢圓的右頂點,直線與軸交于點,過點的另一直線與橢圓交于、兩點,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某國營企業(yè)集團公司現(xiàn)有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了激化內(nèi)部活力,增強企業(yè)競爭力,集團公司董事會決定優(yōu)化產(chǎn)業(yè)結(jié)構(gòu),調(diào)整出()名員工從事第三產(chǎn)業(yè);調(diào)整后,他們平均每人每年創(chuàng)造利潤萬元,剩下的員工平均每人每年創(chuàng)造的利潤可以提高%.
(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多調(diào)整出多少名員工從事第三產(chǎn)業(yè)?
(Ⅱ)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則實數(shù)的取值范圍是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1⊥A1C1,D是B1C1的中點,A1A=A1B1=2.
(1)求證:AB1∥平面A1CD;
(2)若異面直線AB1和BC所成角為60°,求四棱錐A1﹣CDB1B的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com