已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(CRP)∩Q;
(2)若PQ,求實數(shù)a的取值范圍.
(1){x|-2≤x<4}(2)(-∞,2]
解析試題分析:(1)因為a=3,所以P={x|4≤x≤7},
∁RP={x|x<4或x>7}.
又Q={x|x2-3x-10≤0}={x|-2≤x≤5},
所以(∁RP)∩Q={x|x<4或x>7}∩{x|-2≤x≤5}
={x|-2≤x<4}.
(2)若P≠∅,由P⊆Q,
解得0≤a≤2;
當(dāng)P=∅,即2a+1<a+1時,a<0,此時有P=∅⊆Q,所以a<0為所求.
綜上,實數(shù)a的取值范圍是(-∞,2].
考點:集合的運(yùn)算
點評:主要是考查了集合的運(yùn)算以及關(guān)系的運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知集合
(1)能否相等?若能,求出實數(shù)的值,若不能,試說明理由?
(2)若命題命題且是的充分不必要條件,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知集合A=,B=(2a,a2+1).
(Ⅰ)當(dāng)a=2時,求AB;
(Ⅱ)求使B A的實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
記函數(shù)的定義域為集合A,函數(shù)的定義域為集合B.
(1)求A∩B和A∪B;
(2)若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)關(guān)于的不等式的解集為,不等式的解集為.
(1)當(dāng)時,求集合;
(2)若,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com