若都是正實(shí)數(shù),且.求證:與中至少有一個(gè)成立.
證明詳見解析.
解析試題分析:對(duì)于直接難以證明或含否定詞或含至多至少的命題的證明,通?紤]使用反證法證明.本題中含有“至少”,所以本題的證明采用反證法證明較好.先假設(shè)原命題的結(jié)論不正確即原命題結(jié)論的反面成立即同時(shí)成立,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/7/rybly.png" style="vertical-align:middle;" />,進(jìn)而可得,再由同向不等式的可加性得到,這與已知矛盾,進(jìn)而可得假設(shè)不正確,從而肯定原命題的結(jié)論成立.
證明:假設(shè)與都不成立,則有同時(shí)成立
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e0/7/rybly.png" style="vertical-align:middle;" />,所以
兩式相加,可得即,這與已知條件矛盾
因此假設(shè)不成立,所以與中至少有一個(gè)成立.
考點(diǎn):反證法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在常數(shù),使等式對(duì)于一切都成立?若不存在,說明理由;若存在,請用數(shù)學(xué)歸納法證明?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0且0<x<c時(shí),f(x)>0,
(1)證明:是f(x)=0的一個(gè)根;
(2)試比較與c的大。
(3)證明:-2<b<-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
是否存在常數(shù)使得對(duì)一切恒成立?若存在,求出的值,并用數(shù)學(xué)歸納法證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1=1,且4an+1-anan+1+2an=9(n∈N?).
(1)求a2,a3,a4的值;
(2)由(1)猜想{an}的通項(xiàng)公式,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
利用數(shù)學(xué)歸納法證明“ ”時(shí),
從“”變到“”時(shí),左邊應(yīng)增乘的因式是_________________;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com