【題目】已知函數(shù),其中為自然對(duì)數(shù)底數(shù).

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;

(3)已知,若函數(shù)對(duì)任意都成立,求的最大值.

【答案】(1)(2)當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(3)

【解析】

試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義可求切線斜率:,再根據(jù)點(diǎn)斜式求切線方程為,即(2)利用導(dǎo)數(shù)求函數(shù)單調(diào)性,從導(dǎo)函數(shù)出發(fā),研究其零點(diǎn)情況:當(dāng)時(shí),,無零點(diǎn),函數(shù)上單調(diào)遞增;當(dāng)時(shí),由,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.(3)不等式恒成立問題轉(zhuǎn)化為函數(shù)最值問題:,當(dāng)時(shí),函數(shù)無最小值;當(dāng)時(shí),函數(shù)最小值為0,,此時(shí);當(dāng)時(shí),,,最后研究函數(shù)最大值

試題解析:解:(1)當(dāng)時(shí),,,, 2

函數(shù)在點(diǎn)處的切線方程為,

4分

2,

當(dāng)時(shí),,函數(shù)上單調(diào)遞增; 6

當(dāng)時(shí),由

時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.

綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為;當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 9

3)由(2)知,當(dāng)時(shí),函數(shù)上單調(diào)遞增,

不可能恒成立; 10分

當(dāng)時(shí),,此時(shí); 11

當(dāng)時(shí),由函數(shù)對(duì)任意都成立,得,

, 13

設(shè), ,

由于,令,得,,

當(dāng)時(shí),,單調(diào)遞增;時(shí),單調(diào)遞減.

,即的最大值為,

此時(shí) 16

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnax﹣ (a≠0).
(1)求此函數(shù)的單調(diào)區(qū)間及最值;
(2)求證:對(duì)于任意正整數(shù)n,均有1+ + …+ ≥ln (e為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面是正方形的四棱錐P﹣ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).

(1)求證:BD⊥FG;
(2)確定點(diǎn)G在線段AC上的位置,使FG∥平面PBD,并說明理由;
(3)當(dāng)二面角B﹣PC﹣D的大小為 時(shí),求PC與底面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠利用隨機(jī)數(shù)表對(duì)生產(chǎn)的700個(gè)零件進(jìn)行抽樣測試,先將700個(gè)零件進(jìn)行編號(hào)001,002,…,699,700.從中抽取70個(gè)樣本,如圖提供隨機(jī)數(shù)表的第4行到第6行,若從表中第5行第6列開始向右讀取數(shù)據(jù),則得到的第5個(gè)樣本編號(hào)是(

A.607
B.328
C.253
D.007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若將其圖象向右平移 個(gè)單位后得到的圖象關(guān)于原點(diǎn)對(duì)稱,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于點(diǎn)( ,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.

(1)求直線AB的方程;

(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分16分)數(shù)列, 滿足: , ,

1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列;

2)若數(shù)列, 都是等差數(shù)列,求證:數(shù)列從第二項(xiàng)起為等差數(shù)列;

3)若數(shù)列是等差數(shù)列,試判斷當(dāng)時(shí),數(shù)列是否成等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在[a,b]上的函數(shù)f(x)=x3﹣3x2+1的值域?yàn)閇﹣3,1],則b﹣a的最大值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mex﹣x﹣1(其中e為自然對(duì)數(shù)的底數(shù),),若f(x)=0有兩根x1 , x2且x1<x2 , 則函數(shù)y=(e ﹣e )( ﹣m)的值域?yàn)?/span>

查看答案和解析>>

同步練習(xí)冊答案