【題目】已知某單位有50名職工,現(xiàn)要從中抽取 10名職工,將全體職工隨機(jī)按1~50編號,并按編號順序平均分成10組,按各組內(nèi)抽取的編號依次增加5進(jìn)行系統(tǒng)抽樣.
(Ⅰ)若第5組抽出的號碼為22,寫出所有被抽出職工的號碼;
(Ⅱ)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的平均數(shù)、中位數(shù)和方差;
(Ⅲ)在(Ⅱ)的條件下,從這10名職工中隨機(jī)抽取兩名體重不輕于73公斤(73公斤)的職工,求體重為81公斤的職工被抽取到的概率.
【答案】(Ⅰ) 2,7,12,17,22,27,32,37,42,47;(Ⅱ)中位數(shù)為,平均數(shù)為,方差為.(Ⅲ)
【解析】試題分析:
(Ⅰ)利用系統(tǒng)采用的結(jié)論可得:抽出的10名職工的號碼分別為2,7,12,17,22,27,32,37,42,47.
(Ⅱ)利用莖葉圖確定10名職工的體重,然后計(jì)算樣本的平均數(shù)、中位數(shù)和方差即可;
(Ⅲ)利用題意列出所有可能的情況,然后結(jié)合古典概型公式可得: .
試題解析:
(Ⅰ)由各組內(nèi)抽取的編號依次增加5進(jìn)行系統(tǒng)抽樣,且第5組抽出的號碼為22,
設(shè)+5×(5-1)=22,解得,所以第1組抽出的號碼應(yīng)該為2,抽出的10名職工的號碼分別為2,7,12,17,22,27,32,37,42,47.
(Ⅱ)樣本數(shù)據(jù)的中位數(shù)為,
平均數(shù)為,
方差為.
(Ⅲ)從10名職工中隨機(jī)抽取兩名體重不輕于73公斤的職工,共有10種不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).
故所求概率為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】=(sinx,cosx), =(sinx,sinx), =(﹣1,0)
(1)若x= ,求 與 的夾角θ;
(2)若x∈[﹣ , ],f(x)=λ 的最大值為 ,求λ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則以下步驟可以得到函數(shù)f(x)的圖象的是( )
A.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向左平移 個(gè)單位
B.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的2倍,然后再向右平移 個(gè)單位
C.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的 ,然后再向右平移 個(gè)單位
D.將y=sinx的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變成原來的 ,然后再向左平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示,在這些用戶中,用電量落在區(qū)間[150,250)內(nèi)的戶數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.則實(shí)數(shù)m的取值范圍為( )
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知首項(xiàng)是1的兩個(gè)數(shù)列{an},{bn}(bn≠0,n∈N*)滿足anbn+1﹣an+1bn+2bn+1bn=0.
(1)令cn= ,求數(shù)列{cn}的通項(xiàng)公式;
(2)若bn=3n﹣1 , 求數(shù)列{an}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .(x>0)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)若當(dāng)x>0時(shí),f(x)> 恒成立,求正整數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)﹣f(x)<0恒成立,則不等式x2f(x)>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是二次函數(shù),頂點(diǎn)為(﹣1,﹣4),且與x軸的交點(diǎn)為(1,0).
(1)求出f(x)的解析式;
(2)求y=f(x)在區(qū)間[﹣2,2]上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com