5.設(shè)集合A={y|y=x2-2x+1,0≤x≤3},集合B={x|x2-(2m-1)x+m(m-1)≤0}.已知命題p:x∈A,命題q:x∈B,且命題p是命題q的必要不充分條件,求實數(shù)m的取值范圍.

分析 分別求出集合A、B,根據(jù)命題p是命題q的必要不充分條件,得到關(guān)于m的不等式組,解出即可.

解答 解:由已知得A={y|0≤y≤4},…(2分)
B={x|m-1≤x≤m}.…(4分)
∵p是q的必要不充分條件,
∴$B\begin{array}{l}?\\≠\end{array}A$.…(6分)
則有$\left\{\begin{array}{l}m-1≥0\\ m≤4\end{array}\right.$.…(8分)
∴-1≤m≤4,故m的取值范圍為[1,4].…(10分)

點評 本題考查了充分必要條件,考查集合的包含關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某班甲、乙兩名學(xué)生的高考備考成績的莖葉圖如圖所示,分別求兩名學(xué)生成績的中位數(shù)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)命題p:-1<log${\;}_{\frac{1}{2}}$x<0,q:2x>1,則p是q成立的是( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,A,B,C,D是平面直角坐標系上的四個點,將這四個點的坐標(x,y)分別代入x-y=k,若在某點處k取得最大值,則該點是(  )
A.點AB.點BC.點CD.點D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=x2-4x+3-2lnx的零點個數(shù)為  ( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)命題p:?x0∈R,x02+2ax0-2a=0,命題q:?x∈R,ax2+4x+a>-2x2+1,如果命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l1:x-2y-1=0,直線l2:ax+by-1=0,其中a,b∈{1,2,3,4,5,6},則l1⊥l2的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{12}$C.$\frac{1}{18}$D.$\frac{5}{36}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$x2-2alnx+(a-2)x.
(1)當a=1時,求函數(shù)f(x)在[1,e]上的最小值和最大值;
(2)當a≤0時,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線x=-1與拋物線y2=2x的位置關(guān)系是相離.

查看答案和解析>>

同步練習(xí)冊答案