【題目】已知函數(shù)f(x)=(x2-ax+a)e-x,a∈R

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)設(shè)g(x)=f’(x),其中f’(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說(shuō)明理由.

【答案】見(jiàn)解析;(見(jiàn)解析.

【解析】試題分析:(Ⅰ)函數(shù)求導(dǎo)得f’(x)=-(x-2)(x-a)e-x,討論a2的大小,結(jié)合導(dǎo)數(shù)的正負(fù)討論單調(diào)性即可;

(Ⅱ)g’(x)=f(x)=[x2-(a+4)x+3a+2]×e-x,h(x)=x2-(a+4)x+3a+2,通過(guò)二次函數(shù)的性質(zhì)知函數(shù)有正有負(fù),從而得g(x)在定義域內(nèi)不為單調(diào)函數(shù).

試題解析:

(Ⅰ)函數(shù)f(x)的定義域?yàn)?/span>{x|xR}. .

①當(dāng)a<2時(shí),令f’(x)<0,解得:x<ax>2,f(x)為減函數(shù);

f’(x)>0,解得:a<x<2,f(x)為增函數(shù).

②當(dāng)a=2時(shí),f’(x)=-(x-2)2e-x≤0恒成立,函數(shù)f(x)為減函數(shù);

③當(dāng)a>2時(shí),令f’(x)<0,解得:x<2x>a,函數(shù)f(x)為減函數(shù);

f’(x)>0,解得:2<x<a,函數(shù)f(x)為增函數(shù).

綜上,

當(dāng)a<2時(shí),f(x)的單調(diào)遞減區(qū)間為(-∞,a),(2,+∞);單調(diào)遞增區(qū)間為(a,2);

當(dāng)a=2時(shí),f(x)的單調(diào)遞減區(qū)間為(-∞,+∞)

當(dāng)a>2時(shí),f(x)的單調(diào)遞減區(qū)間為(-∞,2),(a,+∞);單調(diào)遞增區(qū)間為(2,a).

g(x)在定義域內(nèi)不為單調(diào)函數(shù),以下說(shuō)明:

g’(x)=f(x)=[x2-(a+4)x+3a+2]×e-x.

h(x)=x2-(a+4)x+3a+2,則函數(shù)h(x)為開(kāi)口向上的二次函數(shù).

方程h(x)=0的判別式△=a2-4a+8=(a-2)2+4>0恒成立.

所以,h(x)有正有負(fù),從而g’(x)有正有負(fù)

g(x)在定義域內(nèi)不為單調(diào)函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修45:不等式選講

已知函數(shù)

1)當(dāng)時(shí),求不等式的解集;

2)若函數(shù)的值域?yàn)?/span>,的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分13分)已知函數(shù),

)求函數(shù)的最小正周期與單調(diào)增區(qū)間;

)求函數(shù)上的最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過(guò)點(diǎn)

⑴求橢圓的方程

⑵若在橢圓上有相異的兩點(diǎn)三點(diǎn)不共線),為坐標(biāo)原點(diǎn),且直線,直線,直線的斜率滿(mǎn)足.

(。┣笞C: 是定值;

(ⅱ)設(shè)的面積為,當(dāng)取得最大值時(shí)求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋子里有編號(hào)為的五個(gè)球,某位教師從袋中任取兩個(gè)不同的球. 教師把所取兩球編號(hào)的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個(gè)球的編號(hào).

甲說(shuō):我無(wú)法確定.”

乙說(shuō):我也無(wú)法確定.”

甲聽(tīng)完乙的回答以后,甲又說(shuō):我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號(hào)球 B. 一定沒(méi)有3號(hào)球 C. 可能有5號(hào)球 D. 可能有6號(hào)球

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面是矩形, 平面, 是等腰三角形, 的一個(gè)三等分點(diǎn)(靠近點(diǎn)),的延長(zhǎng)線交于點(diǎn),連接.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),設(shè)動(dòng)點(diǎn)的軌跡為.

(Ⅰ)求的方程;

(Ⅱ)設(shè)直線與軌跡交于兩點(diǎn), 為坐標(biāo)原點(diǎn),若的重心恰好在圓上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義為R的偶函數(shù),且對(duì)任意的,都有且當(dāng)時(shí), ,若在區(qū)間內(nèi)關(guān)于的方程恰好有3個(gè)不同的實(shí)數(shù)根,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐PABCD,PA⊥平面ABCD,底面ABCD為矩形,ABPABC(a0)

(1)當(dāng)a1時(shí)求證BDPC;

(2)BC邊上有且只有一個(gè)點(diǎn)Q,使得PQQD,求此時(shí)二面角APDQ的余弦值

查看答案和解析>>

同步練習(xí)冊(cè)答案