【題目】已知?jiǎng)狱c(diǎn)到定直線的距離比到定點(diǎn)的距離大.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線交軌跡于, 兩點(diǎn),直線, 分別交直線于點(diǎn), ,證明以為直徑的圓被軸截得的弦長為定值,并求出此定值.
【答案】(I);(II)詳見解析.
【解析】
試題分析:(1)依據(jù)題設(shè)條件及兩點(diǎn)間距離公式建立方程分析求解;(2)依據(jù)題設(shè)條件建立直線,的方程,再運(yùn)用坐標(biāo)之間的關(guān)系分析探求:
試題解析:
解:(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,因?yàn)槎c(diǎn)在定直線:的右側(cè),
且動(dòng)點(diǎn)到定直線:的距離比到定點(diǎn)的距離大,
所以且,
化簡得,即,
軌跡的方程為.
(Ⅱ)設(shè),(),則,,
∵,,三點(diǎn)共線,
∴,
∴,
又,∴,
直線的方程為,令,得.
同理可得.
所以以為直徑的圓的方程為,
即.
將代入上式,可得,
令,即或,
故以為直徑的圓被軸截得的弦長為定值4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為正整數(shù),
(1)證明:當(dāng)時(shí),;
(2)對(duì)于,已知,求證:,;
(3)求出滿足等式的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:
①若,且,則和都是中的最大項(xiàng);
②給定,對(duì)一切,都有;
③若,則中一定有最小項(xiàng);
④存在,使得和同號(hào).
其中正確命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(3)當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知底角為的等腰梯形,底邊長為7,腰長為,當(dāng)一條垂直于底邊垂足為的直線由從左至右向移動(dòng)(與梯形有公共點(diǎn))時(shí),直線把梯形分成兩部分,令,記左邊部分的面積為.
(1)試求1,3時(shí)的值;
(2)寫出關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為,其離心率,焦距為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓上不重合的四個(gè)點(diǎn),且滿足∥,∥,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中表示同一個(gè)函數(shù)的是()
A.f(x)=x﹣1,g(x)= ﹣1
B.f(x)=x2,g(x)=( )4
C.f(x)=,g(x)=|x|
D.f(x)=,g(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓,直線經(jīng)過點(diǎn).若對(duì)任意的實(shí)數(shù),直線被圓截得的弦長為定值,則直線的方程為( )
A.B.C.D.這樣的直線不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)判斷函數(shù)的單調(diào)性,并用定義證明;
(3)當(dāng)時(shí),恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com