已知f(x)=
1
x
-lnx在區(qū)間(1,2)內(nèi)有一個(gè)零點(diǎn)x0,若用二分法求x0的近似值(精確度0.1),則需要將區(qū)間等分的次數(shù)為( 。
分析:由求方程近似解的步驟可知,每次等分區(qū)間,都會(huì)是區(qū)間的長(zhǎng)度變?yōu)樵瓉?lái)的一半,令1×(
1
2
)
n
≤0.1,
求得自然數(shù)n最小值,即為所求.
解答:解:每次等分區(qū)間,都會(huì)是區(qū)間的長(zhǎng)度變?yōu)樵瓉?lái)的一半,而原區(qū)間的長(zhǎng)度為1,
令1×(
1
2
)
n
≤0.1,求得自然數(shù)n最小為4,
故選B.
點(diǎn)評(píng):本題主要考查用二分法求方程的近似解的方法和步驟,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x-2
  , (x>2)
-x2-x+4  ,(x≤2)
,解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x-2
,(x>2)
-x2-x+4,(x≤2)
則不等式f(x)≤2的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1x+1
(x∈R且x≠-1),g(x)=x2+2(x∈R).求:
(1)f(2),g(2);
(2)f[g(2)]的值;
(3)求f[g(x)]的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x
,x∈[-5,-2],則f(x)的最小值為
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案