已知函數(shù)的反函數(shù)為,設(shè)的圖象上在點(diǎn)處的切線在y軸上的截距為,數(shù)列{}滿足:
(Ⅰ)求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)在數(shù)列中,僅最小,求的取值范圍;
(Ⅲ)令函數(shù)數(shù)列滿足,求證:對(duì)一切n≥2的正整數(shù)都有
(Ⅰ);(Ⅱ)的取值范圍為;(Ⅲ)詳見解析
解析試題分析:(Ⅰ)將函數(shù)的反函數(shù)求出來,可得,
再由得
是以2為首項(xiàng),l為公差的等差數(shù)列,由此可得數(shù)列{}的通項(xiàng)公式
(Ⅱ)求出函數(shù)的反函數(shù)在點(diǎn)處的切線的截距即得
將,的通項(xiàng)公式代入得:
這是一個(gè)二次函數(shù),但n只取正整數(shù),畫出圖象可以看出當(dāng)對(duì)稱軸介于與之間的時(shí)候,就僅有最小,,解這個(gè)不等式即可得的取值范圍
(Ⅲ)由題設(shè)可得:結(jié)合待證不等式可看出,可將這個(gè)等式兩邊取倒數(shù),這樣可得: ,從而
又遞推公式可知,各項(xiàng)為正,所以
試題解析:(Ⅰ)
∴函數(shù)的反函數(shù)
則得
是以2為首項(xiàng),l為公差的等差數(shù)列,故 (3分)
(Ⅱ) 在點(diǎn)處的切線方程為
令, 得
(6分)
依題意,僅當(dāng)時(shí)取得最小值,
,解之
∴的取值范圍為 (8分)
(Ⅲ)故
又故,
又
故 (14分)
考點(diǎn):1、數(shù)列與不等式;2、函數(shù)的反函數(shù);3、利用導(dǎo)數(shù)求切線
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中實(shí)數(shù)a為常數(shù).
(I)當(dāng)a=-l時(shí),確定的單調(diào)區(qū)間:
(II)若f(x)在區(qū)間(e為自然對(duì)數(shù)的底數(shù))上的最大值為-3,求a的值;
(Ⅲ)當(dāng)a=-1時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖象在上連續(xù),定義:,.其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.若存在最小正整數(shù),使得對(duì)任意的成立,則稱函數(shù)為上的“階收縮函數(shù)”.
(Ⅰ)若,試寫出,的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對(duì)應(yīng)的;如果不是,請(qǐng)說明理由;
(Ⅲ)已知,函數(shù)是上的2階收縮函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)研究函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),若對(duì)任意的,恒有,求的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場從生產(chǎn)廠家以每件20元購進(jìn)一批商品,若該商品零售價(jià)定為元,則銷售量(單位:件)與零售價(jià)(單位:元)有如下關(guān)系:,問該商品零售價(jià)定為多少元時(shí)毛利潤最大,并求出最大毛利潤.(毛利潤銷售收入進(jìn)貨支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若在上恒成立,求實(shí)數(shù)的取值范圍;
(III)過點(diǎn)作函數(shù)圖像的切線,求切線方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在處的切線與軸平行.
(1)求的值和函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象與拋物線恰有三個(gè)不同交點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com