已知函數(shù)定義在區(qū)間,對任意,恒有

成立,又?jǐn)?shù)列滿足

   (I)在(-1,1)內(nèi)求一個實(shí)數(shù)t,使得

   (II)求證:數(shù)列是等比數(shù)列,并求的表達(dá)式;

   (III)設(shè),是否存在,使得對任意,恒成立?若存在,求出m的最小值;若不存在,請說明理由。

【解】(I),∴    ………3分

       (II),且                  
,即

       ∴是以為首項(xiàng),為公比的等比數(shù)列,                       

       ∴.                                             ………7分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆吉林省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)定義在區(qū)間上,,且當(dāng)時,

恒有.又?jǐn)?shù)列滿足.

(1)證明:上是奇函數(shù);

(2)求的表達(dá)式;

(3)設(shè)為數(shù)列的前項(xiàng)和,若恒成立,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)定義在區(qū)間上,,且當(dāng)時,恒有.又?jǐn)?shù)列滿足

(Ⅰ)證明:上是奇函數(shù);

(Ⅱ)求的表達(dá)式;

(III)設(shè)為數(shù)列的前項(xiàng)和,若恒成立,求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三12月周考理科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)已知函數(shù)定義在區(qū)間,對任意,恒有成立,又?jǐn)?shù)列滿足(I)在(-1,1)內(nèi)求一個實(shí)數(shù)t,使得(II)求證:數(shù)列是等比數(shù)列,并求的表達(dá)式;(III)設(shè),是否存在,使得對任意,恒成立?若存在,求出m的最小值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.

已知函數(shù)定義在區(qū)間上,,對任意

恒有成立,又?jǐn)?shù)列滿足,

設(shè)

(1)在內(nèi)求一個實(shí)數(shù),使得

(2)證明數(shù)列是等比數(shù)列,并求的表達(dá)式和的值;

(3)是否存在,使得對任意,都有成立?若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案