【題目】(本小題滿(mǎn)分12分)某商場(chǎng)為了了解顧客的購(gòu)物信息,隨機(jī)的在商場(chǎng)收集了100位顧客購(gòu)物的相關(guān)數(shù)據(jù),整理如下:

一次購(gòu)物款(單位:元)

[0,50

[50,100

[100,150

[150,200

[200,+∞

顧客人數(shù)

m

20

30

n

10

統(tǒng)計(jì)結(jié)果顯示100位顧客中購(gòu)物款不低于100元的顧客占60%,據(jù)統(tǒng)計(jì)該商場(chǎng)每日大約有5000名顧客,為了增加商場(chǎng)銷(xiāo)售額度,對(duì)一次性購(gòu)物不低于100元的顧客發(fā)放紀(jì)念品(每人一件).(注:視頻率為概率)

1)試確定的值,并估計(jì)該商場(chǎng)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

2)為了迎接店慶,商場(chǎng)進(jìn)行讓利活動(dòng),一次購(gòu)物款200元及以上的一次返利30元;一次性購(gòu)物

款小于200元的按購(gòu)物款的百分比返利,具體見(jiàn)下表:

一次購(gòu)物款(單位:元)

[0,50

[50,100

[100,150

[150,200

返利百分比

0

6%

8%

10%

估計(jì)該商場(chǎng)日均讓利多少元?

【答案】13000;(252000

【解析】

試題本題主要考查統(tǒng)計(jì)表、頻率、頻率分布直方圖等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先利用100位顧客中購(gòu)物款不低于100元的顧客占60%,則,則可求出n的值,再利用總數(shù)為100,得到m的值,不低于100元的顧客占60%,則用得到紀(jì)念品數(shù)量;第二問(wèn),先分別求出每個(gè)購(gòu)物區(qū)間在5000人中分別有多少人,再用區(qū)間的平均數(shù)返利百分比求出的人數(shù),得到結(jié)論.

試題解析:(1100位顧客中購(gòu)物款不低于100元的顧客有;

該商場(chǎng)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量大約為

2)設(shè)購(gòu)物款為元,當(dāng)時(shí),顧客有人,

當(dāng)時(shí),顧客有人,

當(dāng)時(shí),顧客有人,

當(dāng)時(shí),顧客有人,

所以估計(jì)日均讓利為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為且經(jīng)過(guò)點(diǎn)分別是的右頂點(diǎn)和上頂點(diǎn),過(guò)原點(diǎn)的直線(xiàn)交于兩點(diǎn)(點(diǎn)在第一象限),且與線(xiàn)段交于點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若,求直線(xiàn)的方程;

3)若的面積是的面積的倍,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) k為常數(shù))

1)當(dāng)時(shí),求函數(shù)的最值;

2)若,討論函數(shù)的單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.

(1)求動(dòng)圓圓心的軌跡的方程;

(2)已知為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線(xiàn)與軌跡交于,兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且,橢圓經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)直線(xiàn)過(guò)橢圓右頂點(diǎn),交橢圓于另一點(diǎn),點(diǎn)在直線(xiàn)上,且.,求直線(xiàn)的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等邊三角形ABC的邊長(zhǎng)為分別為的中點(diǎn),將沿折起得到四棱錐.點(diǎn)P為四棱錐的外接球球面上任意一點(diǎn),當(dāng)四棱錐的體積最大時(shí),點(diǎn)P到平面距離的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將的圖象上的所有的點(diǎn)( )

A.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

B.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

C.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的,縱坐標(biāo)不變

D.向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓的離心率為,過(guò)軸的垂線(xiàn)與橢圓交于兩點(diǎn),且,動(dòng)點(diǎn)在橢圓上.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)記橢圓的左、右頂點(diǎn)分別為,且直線(xiàn)的斜率分別與直線(xiàn)為坐標(biāo)原點(diǎn))的斜率相同,動(dòng)點(diǎn)不與重合,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地環(huán)保部門(mén)跟蹤調(diào)查一種有害昆蟲(chóng)的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲(chóng)的數(shù)量(萬(wàn)只)與時(shí)間(年)(其中的關(guān)系為.為有效控制有害昆蟲(chóng)數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門(mén)通過(guò)實(shí)時(shí)監(jiān)控比值其中為常數(shù),且)來(lái)進(jìn)行生態(tài)環(huán)境分析.

(1)當(dāng)時(shí),求比值取最小值時(shí)的值;

(2)經(jīng)過(guò)調(diào)查,環(huán)保部門(mén)發(fā)現(xiàn):當(dāng)比值不超過(guò)時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.為自然對(duì)數(shù)的底

查看答案和解析>>

同步練習(xí)冊(cè)答案