A. | [-$\frac{1}{2}$,+∞) | B. | [0,+∞) | C. | (-∞,-$\frac{1}{2}$] | D. | [-$\frac{1}{2}$,0] |
分析 根據(jù)目標(biāo)函數(shù)的幾何意義,尋找直線(xiàn)斜率之間的關(guān)系進(jìn)行求解即可
解答 解:由z=ax-y得y=ax-z,
則直線(xiàn)y=ax-z的斜率最小時(shí),z最大,
若B是目標(biāo)函數(shù)取得最大值的最優(yōu)解,即直線(xiàn)y=ax-z過(guò)點(diǎn)B,且在y軸上的截距-z最小,
得a≥kAB=$\frac{3-\frac{5}{2}}{2-3}=-\frac{1}{2}$.
即a的取值范圍是[-$\frac{1}{2}$,+∞),
故選A.
點(diǎn)評(píng) 本題主要考查線(xiàn)性規(guī)劃的應(yīng)用,根據(jù)直線(xiàn)斜率之間是關(guān)系是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,2) | C. | (3,1) | D. | (4,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$ | B. | $[\frac{{\sqrt{2}}}{2},2]$ | C. | (0,2] | D. | [2,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com