是否存在常數(shù),使等式對(duì)于一切都成立?若不存在,說明理由;若存在,請(qǐng)用數(shù)學(xué)歸納法證明?

,證明詳見解析.

解析試題分析:先從特殊情形,等式必須成立,求出值,然后用數(shù)學(xué)歸納法加以證明,在這里必須指出的是:若題目沒有講要用數(shù)學(xué)歸納法證明,我們也應(yīng)從數(shù)學(xué)歸納法考慮,因?yàn)榈仁降淖筮呂覀儫o法通過數(shù)列求和的知識(shí)解決,其次本題是與自然數(shù)有關(guān)的命題證明,我們應(yīng)優(yōu)先考慮數(shù)學(xué)歸納法,證明時(shí)必須嚴(yán)格遵循數(shù)學(xué)歸納法的證題步驟,做到規(guī)范化.
試題解析:若存在常數(shù)使等式成立,則將代入上式,有,即有 對(duì)于一切成立.                   5分
數(shù)學(xué)歸納法證明如下:
證明如下:(1)當(dāng)時(shí),左邊=,右邊=,所以等式成立,
(2)假設(shè))時(shí)等式成立,即,
當(dāng)時(shí),


也就是說,當(dāng)時(shí),等式成立,
綜上所述,可知等式對(duì)任何都成立.                                       12分
考點(diǎn):數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐
的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點(diǎn)及斜面任兩邊中點(diǎn)的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):“斜邊的中線長(zhǎng)等于斜邊邊長(zhǎng)的一半”.仿照此性質(zhì)寫出直角三棱錐具有的性質(zhì):                                                     .
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u
ks5u

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知a>b>c,且a+b+c=0,用分析法求證:<a.
(2)f(x)=,先分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,且滿足
(1)求,,,的值并寫出其通項(xiàng)公式;
(2)用三段論證明數(shù)列是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.

(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求+…+的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

都是正實(shí)數(shù),且.求證:中至少有一個(gè)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列滿足a1=0且 = 1.
(1) 求的通項(xiàng)公式;
(2) 設(shè)bn,記Sn,證明:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

對(duì)于命題:如果是線段上一點(diǎn),則;將它類比到平面的情形是:若是△內(nèi)一點(diǎn),有;將它類比到空間的情形應(yīng)該是:若是四面體內(nèi)一點(diǎn),則有__________________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

下面給出了關(guān)于復(fù)數(shù)的三種類比推理:
(1)復(fù)數(shù)的加減法運(yùn)算法則可以類比多項(xiàng)式的加減法運(yùn)算法則;
(2)由向量的性質(zhì)=類比得到復(fù)數(shù)的性質(zhì)
;
(3)由向量加法的幾何意義可以類比得到復(fù)數(shù)的加法的幾何意義。
其中類比錯(cuò)誤的是___________

查看答案和解析>>

同步練習(xí)冊(cè)答案