【題目】函數(shù)f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分別是( )
A.13,
B.4,﹣11
C.13,﹣11
D.13,最小值不確定
【答案】C
【解析】解:f′(x)=3x2+4x﹣4=(3x﹣2)(x+2)=0,令f′(x)=0,∵x∈[﹣4,1],∴x=﹣2或 .
列表如下:
x | [﹣4,﹣2) | ﹣2 | |||
f′(x) | + | 0 | ﹣ | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
由表格可知:當(dāng)x=﹣2時(shí),f(x)取得極大值,且f(﹣2)=13,又f(1)=4,因此最大值為13;當(dāng)x= 時(shí),f(x)取得極小值,且f(﹣4)=﹣11,又f( )= ,因此最小值為﹣11.
綜上可得:函數(shù)f(x)=x3+2x2﹣4x+5在[﹣4,1]上的最大值和最小值分別13,﹣11.
故選:C.
【考點(diǎn)精析】利用函數(shù)的最大(小)值與導(dǎo)數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(1)函數(shù)的圖象能否與軸相切?若能與軸相切,求實(shí)數(shù)的值;否則,請說明理由;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)能取到的最大整數(shù)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,AB=BC=BB1, ,D為AC上的點(diǎn),B1C∥平面A1BD;
(1)求證:BD⊥平面;
(2)若且,求三棱錐A-BCB1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3﹣x2﹣x+a,若函數(shù)f(x)過點(diǎn)A(1,0),求函數(shù)在區(qū)間[﹣1,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)判斷直線與曲線的位置關(guān)系,并說明理由;
(2)若直線和曲線相交于兩點(diǎn),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,PD⊥平面ABCD且PD=AD,則下列命題中錯(cuò)誤的是( 。
A.過BD且與PC平行的平面交PA于M點(diǎn),則M為PA的中點(diǎn)
B.過AC且與PB垂直的平面交PB于N點(diǎn),則N為PB的中點(diǎn)
C.過AD且與PC垂直的平面交PC于H點(diǎn),則H為PC的中點(diǎn)
D.過P、B、C的平面與平面PAD的交線為直線l,則l∥AD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com