已知函數(shù)f(x),(x∈R)上任一點(x0,y0)的切線方程為y-y0=(x0-2)(x02-1)(x-x0),那么函數(shù)f(x)的單調(diào)遞減區(qū)間是(  )
分析:由切線方程y-y0=(x0-2)(x02-1)(x-x0),可知任一點的導(dǎo)數(shù)為f′(x)=(x-2)(x2-1),然后由f′(x)<0,可求單調(diào)遞減區(qū)間.
解答:解:因為函數(shù)f(x),(x∈R)上任一點(x0y0)的切線方程為y-y0=(x0-2)(x02-1)(x-x0),
即函數(shù)在任一點(x0y0)的切線斜率為k=(x0-2)(x02-1),即知任一點的導(dǎo)數(shù)為f′(x)=(x-2)(x2-1).
由f′(x)=(x-2)(x2-1)<0,得x<-1或1<x<2,即函數(shù)f(x)的單調(diào)遞減區(qū)間是(-∞,-1)和(1,2).
故選C.
點評:本題的考點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,先由切線方程得到切線斜率,進而得到函數(shù)的導(dǎo)數(shù),然后解導(dǎo)數(shù)不等式,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案