【題目】在極坐標(biāo)系中,點(diǎn) P的極坐標(biāo)是 ,曲線 C的極坐標(biāo)方程為 .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 x軸的正半軸建立平面直角坐標(biāo)系,斜率為﹣1的直線 l經(jīng)過(guò)點(diǎn)P.
(1)寫(xiě)出直線 l的參數(shù)方程和曲線 C的直角坐標(biāo)方程;
(2)若直線 l和曲線C相交于兩點(diǎn)A,B,求 的值.

【答案】
(1)解:由曲線C的極坐標(biāo)方程 可得 ,

因此曲線C的直角坐標(biāo)方程為 ,

,點(diǎn)P的直角坐標(biāo)為

直線l的傾斜角為135°,

所以直線l的參數(shù)方程為 為參數(shù)).


(2)解:將 為參數(shù))代入 ,

,設(shè)A,B對(duì)應(yīng)參數(shù)分別為t1t2,

,根據(jù)直線參數(shù)方程 t的幾何意義,得:


【解析】(1)由曲線C的極坐標(biāo)方程能求出曲線C的直角坐標(biāo)方程,求出點(diǎn)P的直角坐標(biāo)為 ,直線l的傾斜角為135°,由此能求出直線l的參數(shù)方程.(2)將 為參數(shù))代入 ,得 ,設(shè)A,B對(duì)應(yīng)參數(shù)分別為t1t2 , 根據(jù)直線參數(shù)方程t的幾何意義,能求出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 [0,1]內(nèi)有且只有一個(gè) x=,則 f(x)=0 在區(qū)間[0,2016]內(nèi)根的個(gè)數(shù)為

A. 2015 B. 1007 C. 2016 D. 1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】愛(ài)心超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份每天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的頻率;

(2)當(dāng)六月份有一天這種酸奶的進(jìn)貨量為450瓶時(shí),求這一天銷售這種酸奶的平均利潤(rùn)(單位:元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)點(diǎn),且圓心在直線上.

(1)求圓的方程;

(2)平面上有兩點(diǎn),點(diǎn)是圓上的動(dòng)點(diǎn),求的最小值;

(3)若軸上的動(dòng)點(diǎn),分別切圓兩點(diǎn),試問(wèn):直線是否恒過(guò)定點(diǎn)?若是,求出定點(diǎn)坐標(biāo),若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求經(jīng)過(guò)直線L13x + 4y – 5 = 0與直線L22x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程

1)與直線2x + y + 5 = 0平行 ;

2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數(shù)f(x)的最小值為3,求實(shí)數(shù) a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)模式的改變,電商已成為當(dāng)今城鄉(xiāng)種新型的購(gòu)銷平臺(tái).已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出噸該商品可獲利潤(rùn)萬(wàn)元,未售出的商品,每噸虧損萬(wàn)元根據(jù)往年的銷售資料,得到該商品一個(gè)銷售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖如圖所示.已知電商為下一個(gè)銷售季度籌備了噸該商品,現(xiàn)以單位:噸,)表示下一個(gè)銷售季度的市場(chǎng)需求量,(單位:萬(wàn) 元)表示該電商下“個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤(rùn).

(1)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;

(2)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

(3)在頻率分布直方圖的市場(chǎng)需求量分組中,若以市場(chǎng)需求量落入該區(qū)間的頻率作為市場(chǎng)需求量的概率,求該季度利潤(rùn)不超過(guò)萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩袋中各裝有大小相同的小球9個(gè),其中甲袋中紅色、黑色、白色小球的個(gè)數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個(gè)數(shù)均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,

1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;

2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一元二次函數(shù)的最大值為,其圖象的對(duì)稱軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.

1)求該一元二次函數(shù);

2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請(qǐng)說(shuō)出平移的方式.

查看答案和解析>>

同步練習(xí)冊(cè)答案